| L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)13-s + 17-s + 19-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 − 0.866i)31-s − 35-s − 37-s + (0.5 − 0.866i)43-s + (−0.5 + 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)13-s + 17-s + 19-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 − 0.866i)31-s − 35-s − 37-s + (0.5 − 0.866i)43-s + (−0.5 + 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1881405212 - 2.150455997i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1881405212 - 2.150455997i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9758869678 - 0.5397918690i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9758869678 - 0.5397918690i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 41 | \( 1 \) |
| good | 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 - T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.5 + 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.238293853978776008243905404051, −18.4497190035772005663049673049, −18.0847401799855683404625616526, −17.253216610951255651459341142389, −16.33790337446621710522875141745, −15.74884878783040055817494203993, −14.77497377190204468663540749755, −14.555918056058333403031604421909, −13.966645631382729271047902627789, −12.583159365447739268918531768, −12.09569969645194150271653165460, −11.62244415826381709981116023788, −10.76350019467702521637716957965, −9.99014399781766098896248209101, −9.23721246565358186740685283937, −8.50116006770796346688154417451, −7.55561048170999249508637373440, −7.028334187737357016864888950655, −6.32051840969958486277346398308, −5.21677771946187813279380789090, −4.675442305539018242464154053321, −3.623361957076245362371604795024, −2.882945087732699722777788827135, −2.04171040234479059872867587663, −1.1599533898417374382921108667,
0.42815109538979906886397985851, 0.88405139375889861040255220822, 1.77476194375735303562928686148, 3.31345300689635847132205571452, 3.60318499297419773263170966575, 4.72563873735905451710044032960, 5.27099222233792928427752727745, 6.06149621776968536747737050961, 7.307030918880546823192977292777, 7.77670136007722087238167970011, 8.32967806038563360900477795657, 9.360440051164559633454587773760, 9.891400025900309487680634235031, 10.941541625047168021589066831935, 11.46791078842353627787074078314, 12.221506769540059561116763399911, 12.89712408840011844735949794500, 13.81912194705516289966049214729, 14.15169899120038066234718568064, 15.227283212937960622500597328876, 15.80611738069746023073166068992, 16.64762875396165322793842287135, 17.123874782901966610399307400605, 17.64907705243402305536863563846, 18.750801963258618482213842144301