| L(s) = 1 | + (−0.587 − 0.809i)2-s + (−0.309 + 0.951i)4-s + (0.866 − 0.5i)7-s + (0.951 − 0.309i)8-s + (−0.587 − 0.809i)11-s + (−0.913 − 0.406i)14-s + (−0.809 − 0.587i)16-s + (0.978 + 0.207i)17-s + (0.207 − 0.978i)19-s + (−0.309 + 0.951i)22-s + (0.104 + 0.994i)23-s + (0.207 + 0.978i)28-s + (−0.309 + 0.951i)29-s + (0.743 + 0.669i)31-s + i·32-s + ⋯ |
| L(s) = 1 | + (−0.587 − 0.809i)2-s + (−0.309 + 0.951i)4-s + (0.866 − 0.5i)7-s + (0.951 − 0.309i)8-s + (−0.587 − 0.809i)11-s + (−0.913 − 0.406i)14-s + (−0.809 − 0.587i)16-s + (0.978 + 0.207i)17-s + (0.207 − 0.978i)19-s + (−0.309 + 0.951i)22-s + (0.104 + 0.994i)23-s + (0.207 + 0.978i)28-s + (−0.309 + 0.951i)29-s + (0.743 + 0.669i)31-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.357 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.357 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7110491869 - 1.033082354i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7110491869 - 1.033082354i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7733118106 - 0.4077465134i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7733118106 - 0.4077465134i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-0.587 - 0.809i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.587 - 0.809i)T \) |
| 17 | \( 1 + (0.978 + 0.207i)T \) |
| 19 | \( 1 + (0.207 - 0.978i)T \) |
| 23 | \( 1 + (0.104 + 0.994i)T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 31 | \( 1 + (0.743 + 0.669i)T \) |
| 37 | \( 1 + (-0.994 - 0.104i)T \) |
| 41 | \( 1 + (-0.406 - 0.913i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.743 - 0.669i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.587 - 0.809i)T \) |
| 61 | \( 1 + (0.913 + 0.406i)T \) |
| 67 | \( 1 + (-0.207 + 0.978i)T \) |
| 71 | \( 1 + (0.743 - 0.669i)T \) |
| 73 | \( 1 + (-0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.669 + 0.743i)T \) |
| 83 | \( 1 + (0.207 - 0.978i)T \) |
| 89 | \( 1 + (-0.406 + 0.913i)T \) |
| 97 | \( 1 + (0.207 + 0.978i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.88979544392273133776902843728, −18.5962894582242265553469898369, −17.96266793307639828576930888215, −17.18233054831425333557533023941, −16.67557653854386327487759259599, −15.764264784541216779289161019702, −15.20225600188274723619923676034, −14.56246451409233909373102238035, −14.041262611342596804348495822899, −13.07468349570135617444511420875, −12.17953343836719087400232564268, −11.51435386997235689456423211958, −10.497747873365045811955121719855, −9.99397654324189804249111212837, −9.27229904802440789827022892258, −8.2296487915167803979228963865, −7.967954524713958967210642998322, −7.20386304642297878863400337774, −6.22087507418824336545700822224, −5.538788075544832669061932415764, −4.857070530830370669082338845024, −4.142267565475553590993149324824, −2.70619769283808239146199821428, −1.870011847021525545471605213467, −0.98981044342162003262402813752,
0.57735722903107320796431195587, 1.40386086571328175789679312487, 2.26982380868013561850653991620, 3.327486247288168573212754488163, 3.76112526630432605306015540944, 5.02916510548565128525823536743, 5.38049631724533794464825465083, 6.93988452117149007974288430234, 7.423046111387944744910005872650, 8.36648003738607701394704596413, 8.6947581716126536156521189631, 9.74684196105696235774035643344, 10.49848995209933298388465890175, 10.938781655718435708050237204297, 11.72266893432856298351482218243, 12.27909647990606092307555409838, 13.39483229656586451574391771685, 13.66888084801903326142212816515, 14.53816682708767031875389947484, 15.56749562171719421051336486982, 16.27509658351928107474231083123, 17.047489878923286348670630830541, 17.610582294254118079903466557835, 18.190618058691957988888255063256, 19.05211510159781399199959528327