| L(s) = 1 | + (0.587 + 0.809i)2-s + (−0.309 + 0.951i)4-s + (0.866 + 0.5i)7-s + (−0.951 + 0.309i)8-s + (0.587 + 0.809i)11-s + (0.104 + 0.994i)14-s + (−0.809 − 0.587i)16-s + (−0.669 + 0.743i)17-s + (−0.743 − 0.669i)19-s + (−0.309 + 0.951i)22-s + (−0.913 − 0.406i)23-s + (−0.743 + 0.669i)28-s + (−0.309 + 0.951i)29-s + (−0.207 + 0.978i)31-s − i·32-s + ⋯ |
| L(s) = 1 | + (0.587 + 0.809i)2-s + (−0.309 + 0.951i)4-s + (0.866 + 0.5i)7-s + (−0.951 + 0.309i)8-s + (0.587 + 0.809i)11-s + (0.104 + 0.994i)14-s + (−0.809 − 0.587i)16-s + (−0.669 + 0.743i)17-s + (−0.743 − 0.669i)19-s + (−0.309 + 0.951i)22-s + (−0.913 − 0.406i)23-s + (−0.743 + 0.669i)28-s + (−0.309 + 0.951i)29-s + (−0.207 + 0.978i)31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.693 - 0.720i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.693 - 0.720i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.4504959223 + 1.058159560i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.4504959223 + 1.058159560i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8943333063 + 0.8145885168i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8943333063 + 0.8145885168i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (0.587 + 0.809i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.587 + 0.809i)T \) |
| 17 | \( 1 + (-0.669 + 0.743i)T \) |
| 19 | \( 1 + (-0.743 - 0.669i)T \) |
| 23 | \( 1 + (-0.913 - 0.406i)T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 31 | \( 1 + (-0.207 + 0.978i)T \) |
| 37 | \( 1 + (-0.406 - 0.913i)T \) |
| 41 | \( 1 + (-0.994 - 0.104i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.207 - 0.978i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (-0.587 + 0.809i)T \) |
| 61 | \( 1 + (-0.104 - 0.994i)T \) |
| 67 | \( 1 + (0.743 + 0.669i)T \) |
| 71 | \( 1 + (-0.207 - 0.978i)T \) |
| 73 | \( 1 + (0.587 + 0.809i)T \) |
| 79 | \( 1 + (-0.978 + 0.207i)T \) |
| 83 | \( 1 + (-0.743 - 0.669i)T \) |
| 89 | \( 1 + (-0.994 + 0.104i)T \) |
| 97 | \( 1 + (-0.743 + 0.669i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.74056265548839402593083731031, −18.23923295083857244302711277951, −17.26111361821631328346677462977, −16.75519854054290743399144606158, −15.60379092102918958570821369086, −15.05893424480042215134854035173, −14.123460313961741917705662627017, −13.82600361162111969720791136025, −13.15031496954696715143286963892, −12.11448653073332276718022691490, −11.54297965941537487925640630840, −11.07735096054661731537730260747, −10.25076351462372445426401422854, −9.567155113912562183966231092425, −8.653678234535228558115704621792, −7.999988736905593530451347308760, −6.90080276345524237731398050148, −6.07884079097549629766182820054, −5.40061474212419990745239537436, −4.38072586250303266804382658543, −4.01747571103612717171515746257, −3.061865993560371582744033733874, −2.04036801363908491663248857240, −1.412720470556341482801624850931, −0.25997256249197312671623186172,
1.67911769362933767845502268335, 2.31448065188127235528126675042, 3.51364447012160345493244373695, 4.300988494956390977165489168442, 4.90190169167536241633577002229, 5.6336479923914292628742627120, 6.62069220222020634815294962576, 7.00311176404698048237559340152, 8.07690856560624066347721754978, 8.616558841843536720638525609720, 9.20559401319849765429692391092, 10.3492147081312769628506384188, 11.21981788061869473440787703135, 11.97106724860690398111323385757, 12.58031125396418218738007549645, 13.214937063470300725201080017549, 14.24486225285090244648594154774, 14.6315960551957322272114572878, 15.25448907706999281266848672956, 15.87667251802217491446691550096, 16.790497552199333228053499274515, 17.42979074112922249282227080020, 17.93721677681108511188512727433, 18.5440135570932404019883384029, 19.805815793136098817645903426661