L(s) = 1 | + (−0.707 + 0.707i)3-s + (0.965 − 0.258i)5-s − i·9-s + (0.707 + 0.707i)11-s + (−0.5 + 0.866i)15-s + (−0.5 + 0.866i)17-s + (0.707 − 0.707i)19-s + (0.866 − 0.5i)23-s + (0.866 − 0.5i)25-s + (0.707 + 0.707i)27-s + (−0.258 − 0.965i)29-s + (−0.5 − 0.866i)31-s − 33-s + (0.258 − 0.965i)37-s + (−0.866 − 0.5i)41-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s + (0.965 − 0.258i)5-s − i·9-s + (0.707 + 0.707i)11-s + (−0.5 + 0.866i)15-s + (−0.5 + 0.866i)17-s + (0.707 − 0.707i)19-s + (0.866 − 0.5i)23-s + (0.866 − 0.5i)25-s + (0.707 + 0.707i)27-s + (−0.258 − 0.965i)29-s + (−0.5 − 0.866i)31-s − 33-s + (0.258 − 0.965i)37-s + (−0.866 − 0.5i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.897 - 0.440i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.897 - 0.440i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.550947526 - 0.3597807951i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.550947526 - 0.3597807951i\) |
\(L(1)\) |
\(\approx\) |
\(1.066405820 + 0.05820204224i\) |
\(L(1)\) |
\(\approx\) |
\(1.066405820 + 0.05820204224i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.965 - 0.258i)T \) |
| 11 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.707 - 0.707i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.258 - 0.965i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.258 - 0.965i)T \) |
| 41 | \( 1 + (-0.866 - 0.5i)T \) |
| 43 | \( 1 + (0.258 - 0.965i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.258 + 0.965i)T \) |
| 59 | \( 1 + (-0.965 + 0.258i)T \) |
| 61 | \( 1 + (0.707 - 0.707i)T \) |
| 67 | \( 1 + (0.707 - 0.707i)T \) |
| 71 | \( 1 + (-0.866 + 0.5i)T \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.707 - 0.707i)T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.93051338942154714991573523826, −18.41169368703032348820402859602, −17.816165606503620679030785975000, −17.17643331996197129385184282324, −16.50789967878783233587344888685, −15.980234223863958592278146406447, −14.71112314717021539021832722750, −14.121230427557011166578571819905, −13.49537951402417908413190971324, −12.923636967180504471552809963524, −12.05246312538259180705717891713, −11.316702769488827825330844016402, −10.84574599637881248495056912141, −9.88785499089957696238421421155, −9.20833914884730104385421668176, −8.38527215632613881970410701727, −7.3359061014357698427554865942, −6.7632642803843939331084654841, −6.12376873635268287867641160473, −5.363603197738046271925988790479, −4.80691789812448097146006491936, −3.39440938535472673119982358653, −2.69843929062347516221159431688, −1.52870784268807504829766836971, −1.12215130284528508990786285185,
0.592072970524013802863807840166, 1.66971040521795218385753574876, 2.52377869681694206532153432554, 3.74585160505633777332853652053, 4.401002091107909193145089233102, 5.19634099005672591661861421952, 5.83838608379276341516427993595, 6.58528222755228406744220025025, 7.23789289333588077345128288558, 8.58103950319076968556734039719, 9.29759779095565907652170869197, 9.6582177287189015888904040906, 10.57217344070472342862968308093, 11.085107461142373946877012964767, 12.01634746387538374638635263679, 12.62674390074457576715391554695, 13.3991692501387170942581792716, 14.19571009150096834405850632145, 15.08975067897424686857490478791, 15.43124162517378821028899105968, 16.50674429093773584096270747721, 17.1364554691698464509919610615, 17.380562132317865238703746456121, 18.16624216010829055299336825157, 18.95050556058249525763747349878