L(s) = 1 | + (0.707 + 0.707i)3-s + (0.965 + 0.258i)5-s + i·9-s + (0.707 − 0.707i)11-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)17-s + (0.707 + 0.707i)19-s + (0.866 + 0.5i)23-s + (0.866 + 0.5i)25-s + (−0.707 + 0.707i)27-s + (0.258 − 0.965i)29-s + (0.5 − 0.866i)31-s + 33-s + (0.258 + 0.965i)37-s + (0.866 − 0.5i)41-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + (0.965 + 0.258i)5-s + i·9-s + (0.707 − 0.707i)11-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)17-s + (0.707 + 0.707i)19-s + (0.866 + 0.5i)23-s + (0.866 + 0.5i)25-s + (−0.707 + 0.707i)27-s + (0.258 − 0.965i)29-s + (0.5 − 0.866i)31-s + 33-s + (0.258 + 0.965i)37-s + (0.866 − 0.5i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.740 + 0.672i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.740 + 0.672i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.866408476 + 1.106701054i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.866408476 + 1.106701054i\) |
\(L(1)\) |
\(\approx\) |
\(1.679649521 + 0.4241388213i\) |
\(L(1)\) |
\(\approx\) |
\(1.679649521 + 0.4241388213i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.965 + 0.258i)T \) |
| 11 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.707 + 0.707i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.258 - 0.965i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.258 + 0.965i)T \) |
| 41 | \( 1 + (0.866 - 0.5i)T \) |
| 43 | \( 1 + (-0.258 - 0.965i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.258 + 0.965i)T \) |
| 59 | \( 1 + (-0.965 - 0.258i)T \) |
| 61 | \( 1 + (-0.707 - 0.707i)T \) |
| 67 | \( 1 + (0.707 + 0.707i)T \) |
| 71 | \( 1 + (0.866 + 0.5i)T \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.707 + 0.707i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.16988084375707530590890286668, −18.08511087746982545718969338931, −17.84126183629771434709696025050, −17.1828843851823322206473389216, −16.31884763124269794115069906032, −15.36997105550890227548422105894, −14.52332788305539416016897503609, −14.2585377828192040616617281409, −13.29362491915064474195286960970, −12.81065134756211148374780523350, −12.272456586073096718163234556377, −11.247586598589979173042354068172, −10.387570206361142229620095983105, −9.41697797116739062030548833771, −9.11106098032332707021495970230, −8.35023190925757009728838838844, −7.386610496795009171991611066094, −6.649188322395842328278347861724, −6.205791779818494194808158233462, −5.06501200358438326021228442558, −4.33360990697354962553316008134, −3.19425310705929312570031632855, −2.50976903319905075727853799078, −1.600908371692803645468567924542, −1.06351973162777388261646198059,
1.04423179918124702126065347283, 2.07642257542592362793265763402, 2.847617298238394658074226001787, 3.516352112317892055832600138532, 4.44662564273740382958932302178, 5.28805504530318743334505987777, 5.99112613956441745492361177466, 6.86202358108007243563484430575, 7.75048970897492014375118891536, 8.60115754349778299084636483248, 9.383304130862566574169298910824, 9.66820507526921457723965813281, 10.55412929450066111786542331823, 11.260950624272913785695704684447, 11.99961695400846377588631399141, 13.28895021758030617910486380432, 13.69037282845535830526270287294, 14.15582500881132526257636953578, 14.99634239388849087496787060036, 15.58746089390296414003961994010, 16.48402890668539868970188707383, 16.99863919341523091663818483635, 17.72231083970143816518856978259, 18.8538682046612178832360060597, 18.95225293600508206329657663330