| L(s) = 1 | + (0.951 − 0.309i)3-s + 7-s + (0.809 − 0.587i)9-s + (0.587 − 0.809i)11-s + (−0.809 + 0.587i)13-s + (0.951 + 0.309i)17-s + (0.951 + 0.309i)19-s + (0.951 − 0.309i)21-s + (−0.809 − 0.587i)23-s + (0.587 − 0.809i)27-s + (0.951 + 0.309i)31-s + (0.309 − 0.951i)33-s + (0.587 + 0.809i)37-s + (−0.587 + 0.809i)39-s + (−0.587 − 0.809i)41-s + ⋯ |
| L(s) = 1 | + (0.951 − 0.309i)3-s + 7-s + (0.809 − 0.587i)9-s + (0.587 − 0.809i)11-s + (−0.809 + 0.587i)13-s + (0.951 + 0.309i)17-s + (0.951 + 0.309i)19-s + (0.951 − 0.309i)21-s + (−0.809 − 0.587i)23-s + (0.587 − 0.809i)27-s + (0.951 + 0.309i)31-s + (0.309 − 0.951i)33-s + (0.587 + 0.809i)37-s + (−0.587 + 0.809i)39-s + (−0.587 − 0.809i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.843 - 0.537i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.843 - 0.537i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(3.028806335 - 0.8828367496i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.028806335 - 0.8828367496i\) |
| \(L(1)\) |
\(\approx\) |
\(1.751952073 - 0.2718198882i\) |
| \(L(1)\) |
\(\approx\) |
\(1.751952073 - 0.2718198882i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 \) |
| good | 3 | \( 1 + (0.951 - 0.309i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (0.587 - 0.809i)T \) |
| 13 | \( 1 + (-0.809 + 0.587i)T \) |
| 17 | \( 1 + (0.951 + 0.309i)T \) |
| 19 | \( 1 + (0.951 + 0.309i)T \) |
| 23 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.951 + 0.309i)T \) |
| 37 | \( 1 + (0.587 + 0.809i)T \) |
| 41 | \( 1 + (-0.587 - 0.809i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.951 + 0.309i)T \) |
| 53 | \( 1 + (-0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + (-0.587 + 0.809i)T \) |
| 67 | \( 1 + (-0.309 + 0.951i)T \) |
| 71 | \( 1 + (0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.587 + 0.809i)T \) |
| 79 | \( 1 + (-0.951 + 0.309i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 + (-0.587 + 0.809i)T \) |
| 97 | \( 1 + (0.951 - 0.309i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.53769478359223418241657858672, −18.35704850257889048407565639987, −17.95263296220724504647180885936, −17.12367978865856603688305191324, −16.35134597358018577451011140681, −15.442554159956620267805559801003, −14.93815965587602726022738117262, −14.32064595281054247860494690999, −13.82858777151396678049836992152, −12.901724978859602400561151937877, −12.04256966145037054357886398114, −11.51881449086509378588351862825, −10.41680489023553235326755614205, −9.74293967070555279001195984917, −9.34399462096341557401782436505, −8.240210404327104705803967661926, −7.677047020927905463501268420441, −7.28217370056732330597355006899, −6.00285669217167872982089197865, −4.92110962714315473403136324285, −4.6049819065676273978093426138, −3.54970905815312109972683800005, −2.79254706549290495123461532563, −1.905081784638137994110340197582, −1.146826520362716858683180918597,
0.995875888611480006935858829842, 1.68232123441580324378275794238, 2.568901183983663112207346718366, 3.44567500562135917635843421539, 4.18191622203265600043335747160, 5.04036861481254938380904373607, 5.98793663380452171065617744609, 6.9084433258389768011574359626, 7.61661961781653406113361798967, 8.33684870452389615502855465983, 8.75415163553877955958306625892, 9.83874811350012567878378077860, 10.22025512762483243393776949533, 11.63140952875023261264717248815, 11.80748100090790705618385960873, 12.72247940809775857781313337433, 13.71838520514536635380335999280, 14.32832641090866020751929054431, 14.45646770478775919897163367893, 15.433911458779940404760324420582, 16.27653910162912652225388275779, 17.0038022023756746600660219480, 17.75775214469517287710708573555, 18.57367135747336429368238841295, 19.045598607728953815947324523804