| L(s) = 1 | + (0.987 + 0.158i)3-s + (0.835 − 0.550i)5-s + (0.990 − 0.140i)7-s + (0.949 + 0.312i)9-s + (−0.932 + 0.362i)11-s + (0.815 − 0.579i)13-s + (0.911 − 0.411i)15-s + (0.0176 + 0.999i)17-s + (0.648 + 0.760i)19-s + (0.999 + 0.0176i)21-s + (−0.192 − 0.981i)23-s + (0.394 − 0.918i)25-s + (0.888 + 0.458i)27-s + (−0.996 + 0.0881i)29-s + (0.938 + 0.345i)31-s + ⋯ |
| L(s) = 1 | + (0.987 + 0.158i)3-s + (0.835 − 0.550i)5-s + (0.990 − 0.140i)7-s + (0.949 + 0.312i)9-s + (−0.932 + 0.362i)11-s + (0.815 − 0.579i)13-s + (0.911 − 0.411i)15-s + (0.0176 + 0.999i)17-s + (0.648 + 0.760i)19-s + (0.999 + 0.0176i)21-s + (−0.192 − 0.981i)23-s + (0.394 − 0.918i)25-s + (0.888 + 0.458i)27-s + (−0.996 + 0.0881i)29-s + (0.938 + 0.345i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2864 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.995 - 0.0998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2864 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.995 - 0.0998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(5.701283095 - 0.2853120509i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(5.701283095 - 0.2853120509i\) |
| \(L(1)\) |
\(\approx\) |
\(2.114861252 - 0.05487388983i\) |
| \(L(1)\) |
\(\approx\) |
\(2.114861252 - 0.05487388983i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 179 | \( 1 \) |
| good | 3 | \( 1 + (0.987 + 0.158i)T \) |
| 5 | \( 1 + (0.835 - 0.550i)T \) |
| 7 | \( 1 + (0.990 - 0.140i)T \) |
| 11 | \( 1 + (-0.932 + 0.362i)T \) |
| 13 | \( 1 + (0.815 - 0.579i)T \) |
| 17 | \( 1 + (0.0176 + 0.999i)T \) |
| 19 | \( 1 + (0.648 + 0.760i)T \) |
| 23 | \( 1 + (-0.192 - 0.981i)T \) |
| 29 | \( 1 + (-0.996 + 0.0881i)T \) |
| 31 | \( 1 + (0.938 + 0.345i)T \) |
| 37 | \( 1 + (0.996 + 0.0881i)T \) |
| 41 | \( 1 + (-0.635 - 0.772i)T \) |
| 43 | \( 1 + (-0.918 + 0.394i)T \) |
| 47 | \( 1 + (-0.0529 + 0.998i)T \) |
| 53 | \( 1 + (0.888 - 0.458i)T \) |
| 59 | \( 1 + (0.725 + 0.688i)T \) |
| 61 | \( 1 + (0.105 - 0.994i)T \) |
| 67 | \( 1 + (0.378 - 0.925i)T \) |
| 71 | \( 1 + (-0.737 - 0.675i)T \) |
| 73 | \( 1 + (0.427 - 0.904i)T \) |
| 79 | \( 1 + (0.783 + 0.621i)T \) |
| 83 | \( 1 + (0.0352 - 0.999i)T \) |
| 89 | \( 1 + (-0.607 + 0.794i)T \) |
| 97 | \( 1 + (-0.227 + 0.973i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.73635893881682967519306536525, −18.29686992104820814121262129251, −18.00973521995734481000735411999, −16.972330418654972386397688153353, −16.01218278941768662286840232563, −15.31693389073097397794117340183, −14.752074837894518675531141414939, −13.79711143192608362799141207202, −13.63501168052967185500154844738, −13.047378511033893056858169134189, −11.54732899738276722750775705447, −11.38033256528106272118190018971, −10.22579212240392915396593113635, −9.65519037772257402170025302203, −8.87998037162934368038824634919, −8.21706267851267829144620607444, −7.40396666716689191978202731671, −6.851399369486960626210254073821, −5.724127464252830196773700056287, −5.11407799480681494604779229154, −4.09805491415099700077140290767, −3.110291291107000869250090141102, −2.48939685403953966153453478602, −1.75475113805163339466120234130, −0.89881243104306321537072224851,
0.89268907794434087277100134978, 1.70045943537273097325728502681, 2.280568835481580755290530899876, 3.295916490855907153826849718497, 4.20296860294091236047042532698, 4.9569947793723302233303223560, 5.641432749268371228680871772053, 6.579439333371183031771186505182, 7.83671543251260626701042840935, 8.09636301749003625450123486013, 8.7529120341400695122747109866, 9.66364244202807808086594933355, 10.378400961218242051524238214088, 10.77438026662868034611578335601, 12.072066436168511054832532822776, 12.84956745298236695204258589045, 13.37566322260943508867228208667, 14.0018438887979477451552738491, 14.76171231878431993456085800323, 15.269920087710241139269357028213, 16.17854735101021833933970529877, 16.80400526261913047656031097484, 17.80167659736370352048545722678, 18.20887134092857630070859249566, 18.85724084357294568994994461932