| L(s) = 1 | + (0.939 + 0.342i)5-s + (0.766 + 0.642i)7-s + (−0.766 − 0.642i)11-s + 17-s + (0.5 + 0.866i)19-s + (0.766 − 0.642i)23-s + (0.766 + 0.642i)25-s + (−0.173 + 0.984i)29-s + (0.173 + 0.984i)31-s + (0.5 + 0.866i)35-s + (0.5 − 0.866i)37-s + (−0.939 − 0.342i)41-s + (−0.173 + 0.984i)43-s + (0.173 − 0.984i)47-s + (0.173 + 0.984i)49-s + ⋯ |
| L(s) = 1 | + (0.939 + 0.342i)5-s + (0.766 + 0.642i)7-s + (−0.766 − 0.642i)11-s + 17-s + (0.5 + 0.866i)19-s + (0.766 − 0.642i)23-s + (0.766 + 0.642i)25-s + (−0.173 + 0.984i)29-s + (0.173 + 0.984i)31-s + (0.5 + 0.866i)35-s + (0.5 − 0.866i)37-s + (−0.939 − 0.342i)41-s + (−0.173 + 0.984i)43-s + (0.173 − 0.984i)47-s + (0.173 + 0.984i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.143629609 + 0.9536425373i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.143629609 + 0.9536425373i\) |
| \(L(1)\) |
\(\approx\) |
\(1.387996863 + 0.2441946194i\) |
| \(L(1)\) |
\(\approx\) |
\(1.387996863 + 0.2441946194i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (0.939 + 0.342i)T \) |
| 7 | \( 1 + (0.766 + 0.642i)T \) |
| 11 | \( 1 + (-0.766 - 0.642i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.766 - 0.642i)T \) |
| 29 | \( 1 + (-0.173 + 0.984i)T \) |
| 31 | \( 1 + (0.173 + 0.984i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.939 - 0.342i)T \) |
| 43 | \( 1 + (-0.173 + 0.984i)T \) |
| 47 | \( 1 + (0.173 - 0.984i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.766 + 0.642i)T \) |
| 61 | \( 1 + (-0.766 - 0.642i)T \) |
| 67 | \( 1 + (0.939 + 0.342i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (-0.766 - 0.642i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.173 - 0.984i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.93256660582162455486557314488, −18.37309332939777541888957031418, −17.47326180183363988252741400867, −17.22975412768930089052835150721, −16.506694461927202669113186440522, −15.44430254245274763088702945446, −14.946763378460613528423553731866, −13.9597143653205774523321018097, −13.526482497110635571639681392011, −12.90493856202827147014567808489, −11.986012347006907787796270759670, −11.21086604561371195173162512818, −10.43640866898061968840489136557, −9.75467207764106914982169959565, −9.2322111275694102083794514967, −8.05187922727006810539531587180, −7.64862153287240616196841127524, −6.733315516902136107135131959972, −5.79638462422526559314315139558, −4.99589239186216815435627504126, −4.62572460118296697094274880360, −3.38455393330434447108902219300, −2.456558752434322874806256871360, −1.623816543379931698716580574127, −0.798781741618047505840609868060,
1.13424818616278367746412937117, 1.87951221674037542640710896776, 2.848082731535008381270647616019, 3.39181594394508250752624601709, 4.8475255640482659239841327211, 5.38666528078547261594666595566, 5.9331702058427149503500080545, 6.88221437381329861420863339759, 7.78697012084709023614761689189, 8.47416608699798935705810602383, 9.200251387903365422014482604327, 10.06815784642544078505204100823, 10.69142289823418834626482076213, 11.32066410695603928708669314228, 12.32897828656462779395152723897, 12.82806205591042114329381740249, 13.8542198883072666736590726895, 14.322215178443940530772235521031, 14.87883392137079401206950340922, 15.81780747909204488782834807898, 16.573013477788763145820444824695, 17.18739770472956427460110343241, 18.1847995307338552183907079990, 18.41527087281446962788101607663, 18.98331338473501841597901523631