| L(s) = 1 | + (0.642 + 0.766i)5-s + (−0.984 − 0.173i)7-s + (−0.984 − 0.173i)11-s + 17-s + (−0.866 + 0.5i)19-s + (0.173 + 0.984i)23-s + (−0.173 + 0.984i)25-s + (−0.939 + 0.342i)29-s + (0.342 − 0.939i)31-s + (−0.5 − 0.866i)35-s + (−0.866 − 0.5i)37-s + (−0.642 − 0.766i)41-s + (−0.939 + 0.342i)43-s + (−0.342 − 0.939i)47-s + (0.939 + 0.342i)49-s + ⋯ |
| L(s) = 1 | + (0.642 + 0.766i)5-s + (−0.984 − 0.173i)7-s + (−0.984 − 0.173i)11-s + 17-s + (−0.866 + 0.5i)19-s + (0.173 + 0.984i)23-s + (−0.173 + 0.984i)25-s + (−0.939 + 0.342i)29-s + (0.342 − 0.939i)31-s + (−0.5 − 0.866i)35-s + (−0.866 − 0.5i)37-s + (−0.642 − 0.766i)41-s + (−0.939 + 0.342i)43-s + (−0.342 − 0.939i)47-s + (0.939 + 0.342i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.425 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.425 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2135055053 - 0.3363594969i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2135055053 - 0.3363594969i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8321288125 + 0.06913576357i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8321288125 + 0.06913576357i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (0.642 + 0.766i)T \) |
| 7 | \( 1 + (-0.984 - 0.173i)T \) |
| 11 | \( 1 + (-0.984 - 0.173i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.173 + 0.984i)T \) |
| 29 | \( 1 + (-0.939 + 0.342i)T \) |
| 31 | \( 1 + (0.342 - 0.939i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.642 - 0.766i)T \) |
| 43 | \( 1 + (-0.939 + 0.342i)T \) |
| 47 | \( 1 + (-0.342 - 0.939i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.984 - 0.173i)T \) |
| 61 | \( 1 + (-0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.642 - 0.766i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.173 - 0.984i)T \) |
| 83 | \( 1 + (0.984 + 0.173i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (-0.342 - 0.939i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.37001787538374852850996233955, −18.73566865732640840180180862507, −18.0838049959908307390383265014, −17.157714835621093933131957461203, −16.65554073560067557448513236509, −16.02005304675241788564556976776, −15.30511746322367783984786249171, −14.49313306674761670722696378000, −13.52338489821349244674760679178, −13.03717833403343437659212956023, −12.52058466538446354105081371151, −11.80037350007914335605292956225, −10.53651048177609249862680388536, −10.14953704503093671472808519074, −9.40540978392171236390039114029, −8.62920663194863593987223843690, −8.020901428784060481054400251089, −6.88792232724422121080620235339, −6.29393076257806535617922663577, −5.37089895060889868548292959076, −4.907453751556217597110097073604, −3.81497559236390731817419558, −2.857543809328145587670789815466, −2.17681799849972985338321877508, −1.06046191743275358364830514006,
0.12551537136996667145070891259, 1.638361846315906653109768685909, 2.46255695205091720754418646897, 3.328404335945093232100755181386, 3.81835365489202229205685497608, 5.32265566350668718406833486175, 5.69378022791204576545085621605, 6.58433955742529320864003434003, 7.25643857964601053768238114599, 7.99632375419602825743366159984, 9.02602046834042125304096741980, 9.846796412945608991052247580007, 10.28266090196352133186753878144, 10.90797236891580949345373712905, 11.89859228823414056387437359889, 12.72452327880471266990949984652, 13.45734112790266537217626124674, 13.78560887970564954869279370280, 15.020258850597421708286642838046, 15.16801393448581346573981230417, 16.38817596318105865820829950575, 16.72765224839146801583511360955, 17.64637173744046007669458026847, 18.3798970750196287916628259569, 18.996738268668385298719172258786