| L(s) = 1 | + (0.939 − 0.342i)5-s + (0.939 + 0.342i)7-s + (−0.173 − 0.984i)11-s + (0.5 + 0.866i)17-s + 19-s + (0.939 − 0.342i)23-s + (0.766 − 0.642i)25-s + (−0.939 − 0.342i)29-s + (−0.173 + 0.984i)31-s + 35-s + 37-s + (0.173 − 0.984i)41-s + (−0.766 + 0.642i)43-s + (0.173 + 0.984i)47-s + (0.766 + 0.642i)49-s + ⋯ |
| L(s) = 1 | + (0.939 − 0.342i)5-s + (0.939 + 0.342i)7-s + (−0.173 − 0.984i)11-s + (0.5 + 0.866i)17-s + 19-s + (0.939 − 0.342i)23-s + (0.766 − 0.642i)25-s + (−0.939 − 0.342i)29-s + (−0.173 + 0.984i)31-s + 35-s + 37-s + (0.173 − 0.984i)41-s + (−0.766 + 0.642i)43-s + (0.173 + 0.984i)47-s + (0.766 + 0.642i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.998 - 0.0453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.998 - 0.0453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(3.979135200 - 0.09025025194i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.979135200 - 0.09025025194i\) |
| \(L(1)\) |
\(\approx\) |
\(1.587085153 - 0.06053660946i\) |
| \(L(1)\) |
\(\approx\) |
\(1.587085153 - 0.06053660946i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (0.939 - 0.342i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 + (-0.173 - 0.984i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.939 - 0.342i)T \) |
| 29 | \( 1 + (-0.939 - 0.342i)T \) |
| 31 | \( 1 + (-0.173 + 0.984i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (-0.766 + 0.642i)T \) |
| 47 | \( 1 + (0.173 + 0.984i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (-0.173 + 0.984i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.173 - 0.984i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.766 - 0.642i)T \) |
| 83 | \( 1 + (-0.766 + 0.642i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.766 + 0.642i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.657892414590698569956036233293, −18.34549568054840808962337553263, −17.686334244312591416213603753329, −17.01493737448913710648956175369, −16.43754274677757943088832731783, −15.25983088909599032404855083594, −14.77602716502318749647268354460, −14.136852459874929542787691794641, −13.39048912271997673264171875426, −12.85067471607522728014883601693, −11.66579106976673641658474837067, −11.30937766684569390226903806095, −10.31487674777251741512869080311, −9.71833918891440872958278963078, −9.164334003932329969832148814876, −8.03564460942209810520186904778, −7.28965610410690816726812045774, −6.85936950135587588978352606845, −5.52122457829325157076050075336, −5.25029338803152904730930971212, −4.32543449757164381752050922765, −3.25432216983985386375892338309, −2.360021594385220424615290495617, −1.62425192436677646780337035980, −0.77088754116893007645297352040,
0.859915530972862710517751382113, 1.4427383539107876485502839421, 2.41114606884829730166131060705, 3.23127116727746628317346049343, 4.29910785914779079023989575571, 5.33700217857965507146658335002, 5.55851021731390486120733731391, 6.455712081864927108293084100092, 7.514395474129402967016641747598, 8.27869273944360844603182405156, 8.90518859470170265304788323813, 9.57904315240344708657969255032, 10.54990269421199523120132506393, 11.06202651248590924471746335118, 11.90929461186148999356702485500, 12.70887634806782256266547529845, 13.41098286959834077627770350248, 14.092598684474327109657118382, 14.672022841873277466435688652034, 15.42883301272453778562070233839, 16.50869144043894195062508425394, 16.799893965323076111023972432388, 17.72958842922667792783375720536, 18.21012485621086200466884522695, 18.90132848086136139472205354557