| L(s) = 1 | + (−0.766 − 0.642i)5-s + (−0.766 + 0.642i)7-s + (0.939 + 0.342i)11-s + (0.5 + 0.866i)17-s + 19-s + (−0.766 − 0.642i)23-s + (0.173 + 0.984i)25-s + (0.766 − 0.642i)29-s + (0.939 − 0.342i)31-s + 35-s + 37-s + (−0.939 + 0.342i)41-s + (−0.173 − 0.984i)43-s + (−0.939 − 0.342i)47-s + (0.173 − 0.984i)49-s + ⋯ |
| L(s) = 1 | + (−0.766 − 0.642i)5-s + (−0.766 + 0.642i)7-s + (0.939 + 0.342i)11-s + (0.5 + 0.866i)17-s + 19-s + (−0.766 − 0.642i)23-s + (0.173 + 0.984i)25-s + (0.766 − 0.642i)29-s + (0.939 − 0.342i)31-s + 35-s + 37-s + (−0.939 + 0.342i)41-s + (−0.173 − 0.984i)43-s + (−0.939 − 0.342i)47-s + (0.173 − 0.984i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.998 - 0.0453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.998 - 0.0453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.776857625 - 0.04030067848i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.776857625 - 0.04030067848i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9565135207 + 0.01090813224i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9565135207 + 0.01090813224i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (-0.766 - 0.642i)T \) |
| 7 | \( 1 + (-0.766 + 0.642i)T \) |
| 11 | \( 1 + (0.939 + 0.342i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (-0.766 - 0.642i)T \) |
| 29 | \( 1 + (0.766 - 0.642i)T \) |
| 31 | \( 1 + (0.939 - 0.342i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 + (-0.173 - 0.984i)T \) |
| 47 | \( 1 + (-0.939 - 0.342i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.939 - 0.342i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (-0.939 + 0.342i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.173 + 0.984i)T \) |
| 83 | \( 1 + (-0.173 - 0.984i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.173 - 0.984i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.21463692251374627190258694057, −18.313377624182967978951696650948, −17.79556626886498353317866009083, −16.68711237988946388976940426597, −16.243582208685303623692288288965, −15.660429988399537505649874220851, −14.741748039501147412372322303226, −14.00210914123781619390334281869, −13.633470054271555571235760032812, −12.50850614087963669701555205188, −11.72776147206341648814328877923, −11.42518419001817613046647949766, −10.29704760023216247719251178729, −9.84983871555410970110499015652, −9.00224414485630351893380844621, −7.99791964856221597772835897341, −7.36384884878502732578750133278, −6.684382239541094661474416026074, −6.070936218830247071885921028853, −4.90261516929867816644954152738, −4.040809302522163459526367175804, −3.29465047119556511371380517574, −2.86941222870869369921067130632, −1.32907771248686694667276610214, −0.55681505136530790153320729502,
0.53897999211486312781906546534, 1.41310550173560298538186560169, 2.52399888927457942174555092420, 3.499547723201723327052972246271, 4.10135655863000859667957734807, 4.95552407339033464418741703696, 5.90755026964227699553477296108, 6.52494122439578423771230706465, 7.45061747724002602805565911039, 8.32051926024687519361155841426, 8.78954323075426200791132743841, 9.764103862776794966728213234881, 10.155774710702830752775074728073, 11.56777993136520921764258635945, 11.89994640119446795463653788243, 12.47584938025968903051857094559, 13.24628759030031558209903968157, 14.070005030411151404763895796758, 15.07549468710778768110679536515, 15.38670137848503193226274926612, 16.4213163997187796475771376507, 16.61235807421726403413975661859, 17.59787852340917560394972401982, 18.42545483268258791640102902646, 19.18319391202439110461676469161