| L(s) = 1 | + (−0.173 − 0.984i)5-s + (−0.939 + 0.342i)7-s + (−0.939 + 0.342i)11-s − 17-s + (0.5 + 0.866i)19-s + (−0.939 − 0.342i)23-s + (−0.939 + 0.342i)25-s + (0.766 + 0.642i)29-s + (0.766 − 0.642i)31-s + (0.5 + 0.866i)35-s + (−0.5 + 0.866i)37-s + (0.173 + 0.984i)41-s + (0.766 + 0.642i)43-s + (−0.766 − 0.642i)47-s + (0.766 − 0.642i)49-s + ⋯ |
| L(s) = 1 | + (−0.173 − 0.984i)5-s + (−0.939 + 0.342i)7-s + (−0.939 + 0.342i)11-s − 17-s + (0.5 + 0.866i)19-s + (−0.939 − 0.342i)23-s + (−0.939 + 0.342i)25-s + (0.766 + 0.642i)29-s + (0.766 − 0.642i)31-s + (0.5 + 0.866i)35-s + (−0.5 + 0.866i)37-s + (0.173 + 0.984i)41-s + (0.766 + 0.642i)43-s + (−0.766 − 0.642i)47-s + (0.766 − 0.642i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.560 - 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.560 - 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7565703435 - 0.4016992421i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7565703435 - 0.4016992421i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7812950358 - 0.09186987765i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7812950358 - 0.09186987765i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (-0.173 - 0.984i)T \) |
| 7 | \( 1 + (-0.939 + 0.342i)T \) |
| 11 | \( 1 + (-0.939 + 0.342i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.939 - 0.342i)T \) |
| 29 | \( 1 + (0.766 + 0.642i)T \) |
| 31 | \( 1 + (0.766 - 0.642i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.173 + 0.984i)T \) |
| 43 | \( 1 + (0.766 + 0.642i)T \) |
| 47 | \( 1 + (-0.766 - 0.642i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (-0.939 - 0.342i)T \) |
| 61 | \( 1 + (0.939 - 0.342i)T \) |
| 67 | \( 1 + (-0.173 - 0.984i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.939 - 0.342i)T \) |
| 83 | \( 1 + (-0.939 + 0.342i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.766 - 0.642i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.39883758032483094577375476331, −18.68905104321108313804620532156, −17.75969860215498756238802640282, −17.5615496092757819837063836454, −16.20517400714085359852759872067, −15.7424956925204526672653071478, −15.38378473125287681993560382385, −14.168688828214111721519054395187, −13.70969220697812586278855191648, −13.096510208825483719178999490641, −12.1580389489742429439477286311, −11.40028604346882303214488128977, −10.57077667645518731927791250984, −10.22222151033357221231379317886, −9.320362386506466063317588981078, −8.46033467008134509449113261159, −7.51566565185270363612999098927, −6.97485627754046907672225279802, −6.249552359842475585411834852180, −5.507538605453453494770714579426, −4.37476690176007377225573351753, −3.624222176118554062974601488, −2.76367608672652536339730077731, −2.29130621714230581683539766833, −0.65220899981903035361171048087,
0.40639052964076143487577139043, 1.653629074171658949941226225456, 2.552079508998306251061194130498, 3.42971644624766334655696782085, 4.408221064621990271725859824898, 5.01591697033149606416958234313, 5.93391193422680345278241729727, 6.545994601658495039384040109460, 7.64528562773580628384294259027, 8.27199437245266369041322481073, 8.96679443135666461006556050846, 9.84851370192461837447731765223, 10.2278400498752428750302288516, 11.39772975524832360081393565615, 12.169618616284425250020579556300, 12.66812933686995500635248788525, 13.32597185733769946679038730385, 13.94334838093768061570688769045, 15.14735304864847850208189739105, 15.66512342063826596358450069664, 16.27854659991431097013344118806, 16.75998056594960409535215496629, 17.85738007568520690151062006025, 18.26397162720940196366830673043, 19.23118535710192946596493937738