| L(s) = 1 | + (−0.173 + 0.984i)5-s + (−0.939 − 0.342i)7-s + (0.939 + 0.342i)11-s + 17-s + (0.5 − 0.866i)19-s + (−0.939 + 0.342i)23-s + (−0.939 − 0.342i)25-s + (−0.766 + 0.642i)29-s + (0.766 + 0.642i)31-s + (0.5 − 0.866i)35-s + (0.5 + 0.866i)37-s + (0.173 − 0.984i)41-s + (−0.766 + 0.642i)43-s + (0.766 − 0.642i)47-s + (0.766 + 0.642i)49-s + ⋯ |
| L(s) = 1 | + (−0.173 + 0.984i)5-s + (−0.939 − 0.342i)7-s + (0.939 + 0.342i)11-s + 17-s + (0.5 − 0.866i)19-s + (−0.939 + 0.342i)23-s + (−0.939 − 0.342i)25-s + (−0.766 + 0.642i)29-s + (0.766 + 0.642i)31-s + (0.5 − 0.866i)35-s + (0.5 + 0.866i)37-s + (0.173 − 0.984i)41-s + (−0.766 + 0.642i)43-s + (0.766 − 0.642i)47-s + (0.766 + 0.642i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.126526611 + 0.8189808560i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.126526611 + 0.8189808560i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9757427192 + 0.2156372302i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9757427192 + 0.2156372302i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (-0.173 + 0.984i)T \) |
| 7 | \( 1 + (-0.939 - 0.342i)T \) |
| 11 | \( 1 + (0.939 + 0.342i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.939 + 0.342i)T \) |
| 29 | \( 1 + (-0.766 + 0.642i)T \) |
| 31 | \( 1 + (0.766 + 0.642i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (-0.766 + 0.642i)T \) |
| 47 | \( 1 + (0.766 - 0.642i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.939 - 0.342i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (-0.173 + 0.984i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.939 - 0.342i)T \) |
| 83 | \( 1 + (0.939 + 0.342i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.766 - 0.642i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.95677834661454382133102297353, −18.67416679883559660076482207842, −17.45864833470178186549448965596, −16.8306481225446736416774519935, −16.26650610636486814883132021791, −15.81550072344999369072969303661, −14.79909926437807874588021803756, −14.10701978718747681396162948528, −13.29650530089624369796572782065, −12.61559863524373267105367303476, −11.96799056608683379627197707218, −11.54308207475564553783300342918, −10.22877021282894954750062847801, −9.599275690775510779418690818715, −9.13065764581056792034324501633, −8.15565194711618899746964251809, −7.66243312884805011129824026843, −6.41227812545320123259114974436, −5.92189742882847748717780044532, −5.182570292190177920100827391357, −3.9746138920012481418512213159, −3.68625982436427910417735736516, −2.50729261401640662535490128485, −1.45496510055100970334085565394, −0.55347404725185641437389369596,
0.910964697427867870089616186117, 2.04828053029837333867942736455, 3.122271673398253882667583778285, 3.52715797503841309128768000816, 4.39354668108583883343790038441, 5.54897005764866786770091939468, 6.34810331692837213446061933114, 6.98078360598933951104053457744, 7.4870176039106925186621405103, 8.514737767735391442705947253730, 9.56865771658664596390288089892, 9.91441349419325676872105133094, 10.69453386984715588696096766179, 11.61827802254556008397549156301, 12.07164059050181850904989323369, 13.02134055989535029044097579044, 13.82128296223130222267574284419, 14.36228606654720968463675332976, 15.094395873167739371707987338426, 15.8456045643728965758157420261, 16.46863633000903908112672549041, 17.31484012585025320207412479003, 17.922194761534261310976034227640, 18.804805113746341113288034549062, 19.28219675342771035974671210459