| L(s) = 1 | + (−0.342 − 0.939i)5-s + (−0.642 − 0.766i)7-s + (−0.642 − 0.766i)11-s + 17-s + (0.866 + 0.5i)19-s + (0.766 + 0.642i)23-s + (−0.766 + 0.642i)25-s + (0.173 + 0.984i)29-s + (0.984 + 0.173i)31-s + (−0.5 + 0.866i)35-s + (0.866 − 0.5i)37-s + (0.342 + 0.939i)41-s + (0.173 + 0.984i)43-s + (−0.984 + 0.173i)47-s + (−0.173 + 0.984i)49-s + ⋯ |
| L(s) = 1 | + (−0.342 − 0.939i)5-s + (−0.642 − 0.766i)7-s + (−0.642 − 0.766i)11-s + 17-s + (0.866 + 0.5i)19-s + (0.766 + 0.642i)23-s + (−0.766 + 0.642i)25-s + (0.173 + 0.984i)29-s + (0.984 + 0.173i)31-s + (−0.5 + 0.866i)35-s + (0.866 − 0.5i)37-s + (0.342 + 0.939i)41-s + (0.173 + 0.984i)43-s + (−0.984 + 0.173i)47-s + (−0.173 + 0.984i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.856 - 0.516i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.856 - 0.516i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.379316488 - 0.3840863143i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.379316488 - 0.3840863143i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9688453631 - 0.2119159884i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9688453631 - 0.2119159884i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (-0.342 - 0.939i)T \) |
| 7 | \( 1 + (-0.642 - 0.766i)T \) |
| 11 | \( 1 + (-0.642 - 0.766i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.766 + 0.642i)T \) |
| 29 | \( 1 + (0.173 + 0.984i)T \) |
| 31 | \( 1 + (0.984 + 0.173i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.342 + 0.939i)T \) |
| 43 | \( 1 + (0.173 + 0.984i)T \) |
| 47 | \( 1 + (-0.984 + 0.173i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.642 - 0.766i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (0.342 + 0.939i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.642 + 0.766i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (-0.984 + 0.173i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.13061055189184494748888765520, −18.58781349408708213446371682604, −18.083357664942648026529918317760, −17.228022623991887028254792755552, −16.33089306539136281463029397169, −15.50780273589482443842427384817, −15.24350591708707793194424574421, −14.44322702393146826807034272366, −13.599718420865413430222340196428, −12.85745009903808532773863737554, −12.00816120526806129641877888073, −11.61949904489784804109265980358, −10.52825535851481210042638729629, −10.007058381809505687666123232282, −9.34542833470572931184473559681, −8.32595284015975541767749887842, −7.57250416765481454348295941973, −6.92911797056603394491736603305, −6.145464582282768280025794237496, −5.372594813416441501694130844, −4.48468897819658102487961434624, −3.42382937453393800607317536973, −2.772035514315288304048758219963, −2.19355915687757510215044607232, −0.65803542162448144914759848302,
0.82064242003241453692168180600, 1.29580788219394926150149755368, 2.92877551411081813664069317589, 3.41037155581669654603897955752, 4.33752494850113097016373719441, 5.2000885053721537134137914051, 5.803341494746869314218164006228, 6.80333070010863562920546459381, 7.773820339154307959293301265658, 8.066130297519821061036011519479, 9.16649375469545893504737984517, 9.733551312833685015370089393, 10.513447220682356546042968882120, 11.353402611411968184240861188151, 12.06689881633048651545678682429, 12.91905730156350451969494719148, 13.31087458542186535457138599581, 14.08904914947173670685369904481, 14.92199753374100000091011770494, 16.02823299703970090129127489681, 16.26172449652724229030067222063, 16.78721403737953753113516005249, 17.70636350605582352452047330525, 18.47957049305493125693625443677, 19.44599548865823675460298239203