L(s) = 1 | + (0.587 − 0.809i)2-s + (0.587 + 0.809i)3-s + (−0.309 − 0.951i)4-s + 6-s + (−0.587 − 0.809i)7-s + (−0.951 − 0.309i)8-s + (−0.309 + 0.951i)9-s + (0.587 − 0.809i)12-s + (−0.951 − 0.309i)13-s − 14-s + (−0.809 + 0.587i)16-s + i·17-s + (0.587 + 0.809i)18-s + (−0.309 + 0.951i)19-s + (0.309 − 0.951i)21-s + ⋯ |
L(s) = 1 | + (0.587 − 0.809i)2-s + (0.587 + 0.809i)3-s + (−0.309 − 0.951i)4-s + 6-s + (−0.587 − 0.809i)7-s + (−0.951 − 0.309i)8-s + (−0.309 + 0.951i)9-s + (0.587 − 0.809i)12-s + (−0.951 − 0.309i)13-s − 14-s + (−0.809 + 0.587i)16-s + i·17-s + (0.587 + 0.809i)18-s + (−0.309 + 0.951i)19-s + (0.309 − 0.951i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.390 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.390 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3443257956 + 0.5198463311i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3443257956 + 0.5198463311i\) |
\(L(1)\) |
\(\approx\) |
\(1.119592058 - 0.2060814316i\) |
\(L(1)\) |
\(\approx\) |
\(1.119592058 - 0.2060814316i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.587 - 0.809i)T \) |
| 3 | \( 1 + (0.587 + 0.809i)T \) |
| 7 | \( 1 + (-0.587 - 0.809i)T \) |
| 13 | \( 1 + (-0.951 - 0.309i)T \) |
| 17 | \( 1 + iT \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (0.587 + 0.809i)T \) |
| 29 | \( 1 + (-0.309 - 0.951i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + (0.309 + 0.951i)T \) |
| 67 | \( 1 + (-0.951 + 0.309i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (-0.951 - 0.309i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.809 - 0.587i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.90671403379996247827323561749, −24.52353619569602538713959487186, −23.5452654484594981705515967766, −22.56252674196263611184540272617, −21.7921473742252067640109499884, −20.69811104886674528672581260737, −19.61231119041282494835726543105, −18.63920629656503132094113715384, −17.86017190261279283040391439443, −16.76304081263684610216862209231, −15.73452620762686617119599070542, −14.798038215987095660829096709792, −14.132641664488092415419610411478, −12.93382303598869255688677376154, −12.51843468263845879228549937151, −11.439865263043116778307874169742, −9.31881104504977941128991886950, −8.893560071889453786854204827785, −7.51206968999954011183468392084, −6.88238725965273127831285186918, −5.83821309004623937687953639248, −4.65022945178356647933202226029, −3.114278103588491348132211433187, −2.37718937436604249424597454603, −0.13242525399660787185184044486,
1.73053524486948349061987011161, 3.09551897496254128979124714553, 3.84106325335131860788207931390, 4.82820230052609192968724096841, 6.01090672187221559881009335340, 7.53429709517917880436991295494, 8.881877330596136560389471804956, 10.05397180957904530687149895594, 10.30523021327195257703245963789, 11.5512034244637228985014683566, 12.827107049228489105770919544794, 13.526267011202103858253075059653, 14.61444807702110867024866932713, 15.1646008881959441587152023365, 16.418127860643740186656066460628, 17.363193103396694514557484550032, 18.992135997082081767123153484079, 19.59403160593145160188475099730, 20.31264973497517436808322100165, 21.19649127454283024504983107765, 21.98375400976357132579909232403, 22.79486322643244404050846822020, 23.64691899634171792297210201026, 24.83604435953222288505031620208, 25.83742367680770734409537245430