| L(s) = 1 | + (0.587 + 0.809i)2-s + (−0.587 + 0.809i)3-s + (−0.309 + 0.951i)4-s − 6-s + (−0.587 + 0.809i)7-s + (−0.951 + 0.309i)8-s + (−0.309 − 0.951i)9-s + (−0.587 − 0.809i)12-s + (−0.951 + 0.309i)13-s − 14-s + (−0.809 − 0.587i)16-s − i·17-s + (0.587 − 0.809i)18-s + (0.309 + 0.951i)19-s + (−0.309 − 0.951i)21-s + ⋯ |
| L(s) = 1 | + (0.587 + 0.809i)2-s + (−0.587 + 0.809i)3-s + (−0.309 + 0.951i)4-s − 6-s + (−0.587 + 0.809i)7-s + (−0.951 + 0.309i)8-s + (−0.309 − 0.951i)9-s + (−0.587 − 0.809i)12-s + (−0.951 + 0.309i)13-s − 14-s + (−0.809 − 0.587i)16-s − i·17-s + (0.587 − 0.809i)18-s + (0.309 + 0.951i)19-s + (−0.309 − 0.951i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.582 - 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.582 - 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3016841079 + 0.5872157173i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.3016841079 + 0.5872157173i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4783399086 + 0.6878407940i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4783399086 + 0.6878407940i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (0.587 + 0.809i)T \) |
| 3 | \( 1 + (-0.587 + 0.809i)T \) |
| 7 | \( 1 + (-0.587 + 0.809i)T \) |
| 13 | \( 1 + (-0.951 + 0.309i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.587 + 0.809i)T \) |
| 29 | \( 1 + (0.309 - 0.951i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 + (-0.309 + 0.951i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (0.587 - 0.809i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + (-0.309 + 0.951i)T \) |
| 67 | \( 1 + (0.951 + 0.309i)T \) |
| 71 | \( 1 + (-0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.951 + 0.309i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.70876636904180672301009283580, −23.86961419123225299124956527599, −23.3316535063259743109904130028, −22.23717037977342075062357529844, −21.87176975742600162797250297229, −20.24545539456696095401058593486, −19.73254489144745871527864166692, −18.91811523836733381702321651280, −17.84145461676610802017236508146, −17.02155368369129342421921023343, −15.820272926644337289598701986548, −14.44959800358667193412972341222, −13.66962019264326516782018739159, −12.636000173466987045419562621945, −12.28228568863258887616295889316, −10.83850626559275377001564470472, −10.41861777834278027768223438510, −9.03577459062944039680172375851, −7.45199953528982465850419016594, −6.54073257641131346368236995232, −5.468848025665932532117452681691, −4.37928996757082978300101224219, −3.03794902881634107418941691263, −1.80413255918967329094259847983, −0.3793442556124203010967167318,
2.710497951804625146785680086822, 3.831773098327347109553207033686, 4.97505419106794403530436704268, 5.747266639231345086830622039229, 6.67646944495354385692074716966, 7.94167401730182578035003776814, 9.30487502480799112795296342213, 9.85791217789192456845645005090, 11.699139221868059307298987943717, 12.03004097134321304645859214098, 13.2978239604912892206425912851, 14.505887245987907737734993866804, 15.254669236252010100354831176847, 16.12301827916034755892762244913, 16.70557264047213995225447279079, 17.75627480271908029722475552369, 18.676228957809700682599409558407, 20.18123843081228734555731319572, 21.25905431191082209654868330116, 21.97564472011965905496361779755, 22.59017116654660949182258406383, 23.38361036133489344165169842322, 24.487801619529625513856840738216, 25.279651520430143517775517438392, 26.2379886571380576869301562886