L(s) = 1 | + (−0.951 + 0.309i)2-s + (−0.951 − 0.309i)3-s + (0.809 − 0.587i)4-s + 6-s + (0.951 + 0.309i)7-s + (−0.587 + 0.809i)8-s + (0.809 + 0.587i)9-s + (−0.951 + 0.309i)12-s + (−0.587 + 0.809i)13-s − 14-s + (0.309 − 0.951i)16-s + i·17-s + (−0.951 − 0.309i)18-s + (0.809 + 0.587i)19-s + (−0.809 − 0.587i)21-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)2-s + (−0.951 − 0.309i)3-s + (0.809 − 0.587i)4-s + 6-s + (0.951 + 0.309i)7-s + (−0.587 + 0.809i)8-s + (0.809 + 0.587i)9-s + (−0.951 + 0.309i)12-s + (−0.587 + 0.809i)13-s − 14-s + (0.309 − 0.951i)16-s + i·17-s + (−0.951 − 0.309i)18-s + (0.809 + 0.587i)19-s + (−0.809 − 0.587i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.650 + 0.759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.650 + 0.759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2386396939 + 0.5185796204i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2386396939 + 0.5185796204i\) |
\(L(1)\) |
\(\approx\) |
\(0.5355298662 + 0.1340791280i\) |
\(L(1)\) |
\(\approx\) |
\(0.5355298662 + 0.1340791280i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.951 + 0.309i)T \) |
| 3 | \( 1 + (-0.951 - 0.309i)T \) |
| 7 | \( 1 + (0.951 + 0.309i)T \) |
| 13 | \( 1 + (-0.587 + 0.809i)T \) |
| 17 | \( 1 + iT \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
| 23 | \( 1 + (-0.951 - 0.309i)T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.309 - 0.951i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.951 + 0.309i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + (-0.809 + 0.587i)T \) |
| 67 | \( 1 + (-0.587 - 0.809i)T \) |
| 71 | \( 1 + (0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.587 + 0.809i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.069771638124274078744585580385, −24.366934057851896862994694871232, −23.36122538967456628072576990718, −22.181200408743048680128099471312, −21.45761935317393412979886787017, −20.4707277547971802270024658378, −19.76452669007051378099214910181, −18.21815345345819051283941807956, −17.89492219390954789688141966416, −17.08551795314787971709427152368, −16.073366955054358468210969343540, −15.356673669293595736824407649108, −13.940093081461180949170913928919, −12.393251000148924347806063949709, −11.75188555229534146657507509243, −10.82275167236672167814288353643, −10.11570875125206905908541333863, −9.06583692610740742890485365743, −7.731737342974117864873739021976, −7.01459360663993239410692330086, −5.58266147471683668607737823204, −4.53573581288291199526945678079, −3.005294307815394165510831530747, −1.40776234995703137057267429776, −0.30778896771146806482209453826,
1.25801612229075941496493735050, 2.1810604967578698886483371848, 4.46128450238346452680828303751, 5.61075693965736093359391126895, 6.46482714553045445017425728132, 7.60676362407846908171814659180, 8.36102320197935392574338114574, 9.767296936784223825901717788688, 10.579448921179235168164909046064, 11.727674680393378630861673111242, 12.07086881391948448951052280689, 13.814905129721792575834879129625, 14.894843852967788829007493547, 15.87102071626517138069530088502, 16.91451563231483399357556009286, 17.40652334863507514481416904491, 18.41679131927158374105986006712, 18.947209038665768656095018444113, 20.16386749415566776680167030270, 21.25938057706446232093006487340, 22.118201232138843202360853121657, 23.436710742470564149537325702271, 24.20778045019224625592866355041, 24.62382425769045703353556203499, 25.853154467844691451937086913125