L(s) = 1 | + i·2-s + (−0.951 − 0.309i)3-s − 4-s + (0.309 − 0.951i)6-s + (0.587 − 0.809i)7-s − i·8-s + (0.809 + 0.587i)9-s + (0.951 + 0.309i)12-s + (−0.587 + 0.809i)13-s + (0.809 + 0.587i)14-s + 16-s + (0.951 + 0.309i)17-s + (−0.587 + 0.809i)18-s − 19-s + (−0.809 + 0.587i)21-s + ⋯ |
L(s) = 1 | + i·2-s + (−0.951 − 0.309i)3-s − 4-s + (0.309 − 0.951i)6-s + (0.587 − 0.809i)7-s − i·8-s + (0.809 + 0.587i)9-s + (0.951 + 0.309i)12-s + (−0.587 + 0.809i)13-s + (0.809 + 0.587i)14-s + 16-s + (0.951 + 0.309i)17-s + (−0.587 + 0.809i)18-s − 19-s + (−0.809 + 0.587i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.163 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.163 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3889808469 - 0.3296588955i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3889808469 - 0.3296588955i\) |
\(L(1)\) |
\(\approx\) |
\(0.6473681740 + 0.1601266359i\) |
\(L(1)\) |
\(\approx\) |
\(0.6473681740 + 0.1601266359i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + iT \) |
| 3 | \( 1 + (-0.951 - 0.309i)T \) |
| 7 | \( 1 + (0.587 - 0.809i)T \) |
| 13 | \( 1 + (-0.587 + 0.809i)T \) |
| 17 | \( 1 + (0.951 + 0.309i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.951 - 0.309i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.587 - 0.809i)T \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.951 + 0.309i)T \) |
| 53 | \( 1 + (0.951 - 0.309i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + (-0.809 + 0.587i)T \) |
| 67 | \( 1 + (0.587 - 0.809i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (-0.951 - 0.309i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.951 - 0.309i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.951 + 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.80986754816151274782900711804, −24.55310868345376570960842526766, −23.547177307905492012745055566235, −22.706014953648452402812232925480, −21.95097161924774875792316055179, −21.19059412767653839028870022203, −20.48794344033620560564741565594, −19.075316320785406283825971764563, −18.4421460509265465812397961670, −17.47058638077083309103956279160, −16.82318996503114078220562314025, −15.292616721227409606012467574804, −14.61622912184518964157403206846, −13.04532085477655568188910990470, −12.33632814029077192845263868951, −11.5074393161647187701104299710, −10.70043766112244228489823846391, −9.76924659057822530700835036001, −8.768383580890492859178532891647, −7.461780278127672594047072655918, −5.67343141895357188892410050282, −5.16198795931315623817045984445, −3.95051126569848449037439138873, −2.579600374750635410475577517500, −1.19741418470949548557268128487,
0.20672277207647512289184518760, 1.56429285332506418436291845551, 3.96318200192966649047675822567, 4.85504339229042894080605486229, 5.812084492368828857905056384942, 7.00645264693076368247553244326, 7.48945975842320701890817660994, 8.80271680749503714270208154578, 10.11516466065972040240370293134, 10.99802642565557735733094834030, 12.28310421313761709741928739012, 13.1417927810556844701487133760, 14.2352905242322682755112174866, 15.00580520428238998022055365446, 16.43096344202658304607832224259, 16.87174644560245869031219061387, 17.570097876623525766927410860652, 18.617581716569712958274979200450, 19.3666083220955633501672102517, 21.050499241480112756666723384856, 21.8390311016234619825151631904, 22.93637533311525556694260716949, 23.561411193535184518393764466896, 24.1480543158381584293958400878, 25.06069208182010281342577684162