L(s) = 1 | + (−0.587 − 0.809i)2-s + (−0.587 − 0.809i)3-s + (−0.309 + 0.951i)4-s + (−0.309 + 0.951i)6-s + (−0.951 + 0.309i)7-s + (0.951 − 0.309i)8-s + (−0.309 + 0.951i)9-s + (0.951 − 0.309i)12-s + (−0.951 − 0.309i)13-s + (0.809 + 0.587i)14-s + (−0.809 − 0.587i)16-s + (0.951 + 0.309i)17-s + (0.951 − 0.309i)18-s + (0.309 + 0.951i)19-s + (0.809 + 0.587i)21-s + ⋯ |
L(s) = 1 | + (−0.587 − 0.809i)2-s + (−0.587 − 0.809i)3-s + (−0.309 + 0.951i)4-s + (−0.309 + 0.951i)6-s + (−0.951 + 0.309i)7-s + (0.951 − 0.309i)8-s + (−0.309 + 0.951i)9-s + (0.951 − 0.309i)12-s + (−0.951 − 0.309i)13-s + (0.809 + 0.587i)14-s + (−0.809 − 0.587i)16-s + (0.951 + 0.309i)17-s + (0.951 − 0.309i)18-s + (0.309 + 0.951i)19-s + (0.809 + 0.587i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.668 - 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.668 - 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5262255863 - 0.2346192336i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5262255863 - 0.2346192336i\) |
\(L(1)\) |
\(\approx\) |
\(0.5386705083 - 0.2462109034i\) |
\(L(1)\) |
\(\approx\) |
\(0.5386705083 - 0.2462109034i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.587 - 0.809i)T \) |
| 3 | \( 1 + (-0.587 - 0.809i)T \) |
| 7 | \( 1 + (-0.951 + 0.309i)T \) |
| 13 | \( 1 + (-0.951 - 0.309i)T \) |
| 17 | \( 1 + (0.951 + 0.309i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (0.951 + 0.309i)T \) |
| 29 | \( 1 + (0.309 - 0.951i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.587 + 0.809i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.587 + 0.809i)T \) |
| 53 | \( 1 + (-0.951 + 0.309i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + (-0.309 - 0.951i)T \) |
| 67 | \( 1 + (0.587 + 0.809i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.309 + 0.951i)T \) |
| 83 | \( 1 + (-0.951 - 0.309i)T \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 + (0.951 - 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.9820059457030932569373173357, −25.07864295679064001651395705155, −23.92795505119918067964643944446, −23.10363484537401860388164110116, −22.44003974782768796402018330590, −21.44829934055237000213193195240, −20.1297462087416800654468947667, −19.34515205091041217325804124314, −18.26835640532203969593933151864, −17.184037675669327253754757038626, −16.629615804562723604672907271484, −15.85846011301020257497090643200, −14.971189682583227900722383541607, −14.0323412792430800577846527415, −12.69657229965540595815562988948, −11.430021889376448421953880664464, −10.288195436505388612729616496869, −9.68006743491678755361587553243, −8.84371823052108702257190641836, −7.28158424744669484690314905992, −6.547633459138157643573211885045, −5.37433766601417467655872739016, −4.53041668345997367454523355405, −3.02008539171304517725119712666, −0.7180742427489782163447608954,
0.93670518187787454967545077679, 2.34323104219065567983838790004, 3.36683166609744084348612087522, 5.029671137471249480673851704549, 6.284171117231753996007794998608, 7.420897326700270679191118098717, 8.26220788015816518162026042067, 9.67531090697496618195273518356, 10.31740416059504496868326672838, 11.63755609996839190346550155088, 12.3132539842330719347457843493, 12.970033993031611470290529532800, 14.02500512071496525683727122747, 15.64827482084437426313456476957, 16.90952533344756294067090688621, 17.20352488394132420865544877468, 18.59524485946317334074399692954, 18.98783196470603323118935179842, 19.78147659042187375082302445161, 20.93367582641677322816420129700, 22.07120423219784628302363125996, 22.6497360829537649171931515249, 23.54918180778533167937372470387, 25.06735333617859187986953180844, 25.33052314427337538567159652750