Properties

Label 1-2747-2747.2746-r1-0-0
Degree $1$
Conductor $2747$
Sign $1$
Analytic cond. $295.206$
Root an. cond. $295.206$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 7-s − 8-s + 9-s + 10-s + 11-s + 12-s + 13-s − 14-s − 15-s + 16-s − 17-s − 18-s − 19-s − 20-s + 21-s − 22-s + 23-s − 24-s + 25-s − 26-s + 27-s + 28-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 7-s − 8-s + 9-s + 10-s + 11-s + 12-s + 13-s − 14-s − 15-s + 16-s − 17-s − 18-s − 19-s − 20-s + 21-s − 22-s + 23-s − 24-s + 25-s − 26-s + 27-s + 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2747 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2747 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(2747\)    =    \(41 \cdot 67\)
Sign: $1$
Analytic conductor: \(295.206\)
Root analytic conductor: \(295.206\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2747} (2746, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 2747,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.406682545\)
\(L(\frac12)\) \(\approx\) \(2.406682545\)
\(L(1)\) \(\approx\) \(1.078929451\)
\(L(1)\) \(\approx\) \(1.078929451\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad41 \( 1 \)
67 \( 1 \)
good2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 - T \)
19 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 - T \)
31 \( 1 - T \)
37 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 - T \)
71 \( 1 - T \)
73 \( 1 + T \)
79 \( 1 + T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.10561082079474335590873130771, −18.44607357222420371962692236023, −17.93327176154986057084226434868, −16.860325834334903237618452970120, −16.38984417385868049322459705119, −15.35192830115340544310404068428, −14.99264813225726100457015571716, −14.541837156954757910253960938462, −13.352380395052519810798790707183, −12.642707304489907245774242357211, −11.56264866818029471112358462982, −11.18379211897296035916362752839, −10.54864598558742216085604929014, −9.35020092903090537859140500220, −8.71739811436874646646587554978, −8.4694856390700401622112112699, −7.59701981212289846873901445259, −7.00524091438758781298978232459, −6.240780529401129877415607086789, −4.80270192550813386464012001138, −3.94793805517783340733214078328, −3.377566665785640857380054360269, −2.205020323915749488193934980453, −1.55825174257851037328410217613, −0.683261664907532098024605668905, 0.683261664907532098024605668905, 1.55825174257851037328410217613, 2.205020323915749488193934980453, 3.377566665785640857380054360269, 3.94793805517783340733214078328, 4.80270192550813386464012001138, 6.240780529401129877415607086789, 7.00524091438758781298978232459, 7.59701981212289846873901445259, 8.4694856390700401622112112699, 8.71739811436874646646587554978, 9.35020092903090537859140500220, 10.54864598558742216085604929014, 11.18379211897296035916362752839, 11.56264866818029471112358462982, 12.642707304489907245774242357211, 13.352380395052519810798790707183, 14.541837156954757910253960938462, 14.99264813225726100457015571716, 15.35192830115340544310404068428, 16.38984417385868049322459705119, 16.860325834334903237618452970120, 17.93327176154986057084226434868, 18.44607357222420371962692236023, 19.10561082079474335590873130771

Graph of the $Z$-function along the critical line