L(s) = 1 | + (0.845 − 0.534i)3-s + (−0.663 − 0.748i)5-s + (−0.721 + 0.692i)7-s + (0.428 − 0.903i)9-s + (−0.903 + 0.428i)11-s + (−0.960 − 0.278i)15-s + (−0.692 − 0.721i)17-s + (−0.866 + 0.5i)19-s + (−0.239 + 0.970i)21-s + (−0.5 + 0.866i)23-s + (−0.120 + 0.992i)25-s + (−0.120 − 0.992i)27-s + (−0.996 + 0.0804i)29-s + (0.992 − 0.120i)31-s + (−0.534 + 0.845i)33-s + ⋯ |
L(s) = 1 | + (0.845 − 0.534i)3-s + (−0.663 − 0.748i)5-s + (−0.721 + 0.692i)7-s + (0.428 − 0.903i)9-s + (−0.903 + 0.428i)11-s + (−0.960 − 0.278i)15-s + (−0.692 − 0.721i)17-s + (−0.866 + 0.5i)19-s + (−0.239 + 0.970i)21-s + (−0.5 + 0.866i)23-s + (−0.120 + 0.992i)25-s + (−0.120 − 0.992i)27-s + (−0.996 + 0.0804i)29-s + (0.992 − 0.120i)31-s + (−0.534 + 0.845i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.764 + 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.764 + 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01005442545 + 0.02753579244i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01005442545 + 0.02753579244i\) |
\(L(1)\) |
\(\approx\) |
\(0.7878325023 - 0.1682821897i\) |
\(L(1)\) |
\(\approx\) |
\(0.7878325023 - 0.1682821897i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.845 - 0.534i)T \) |
| 5 | \( 1 + (-0.663 - 0.748i)T \) |
| 7 | \( 1 + (-0.721 + 0.692i)T \) |
| 11 | \( 1 + (-0.903 + 0.428i)T \) |
| 17 | \( 1 + (-0.692 - 0.721i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.996 + 0.0804i)T \) |
| 31 | \( 1 + (0.992 - 0.120i)T \) |
| 37 | \( 1 + (-0.391 + 0.919i)T \) |
| 41 | \( 1 + (-0.534 - 0.845i)T \) |
| 43 | \( 1 + (-0.919 + 0.391i)T \) |
| 47 | \( 1 + (0.935 - 0.354i)T \) |
| 53 | \( 1 + (-0.970 + 0.239i)T \) |
| 59 | \( 1 + (-0.316 + 0.948i)T \) |
| 61 | \( 1 + (0.278 + 0.960i)T \) |
| 67 | \( 1 + (0.160 - 0.987i)T \) |
| 71 | \( 1 + (-0.999 + 0.0402i)T \) |
| 73 | \( 1 + (-0.822 - 0.568i)T \) |
| 79 | \( 1 + (0.354 + 0.935i)T \) |
| 83 | \( 1 + (-0.464 - 0.885i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (-0.979 - 0.200i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.246921773684437958616356227793, −21.74828566615896575583025424158, −20.624347422781236426654254604576, −20.00413612104807842330774436360, −19.13464567681922142800043014646, −18.7795260438711230142763749888, −17.46519027787723564041143656875, −16.38604090285873950140786352395, −15.71659017953697438640074692605, −15.08252392980246893826283335293, −14.20385543918117989270500602150, −13.35496173837405139670084763982, −12.66766371004532068026266361199, −11.144429665631173402776005131336, −10.57597359675303462747939376989, −9.924229437951724281199274751621, −8.682179365768817575737784868555, −8.00763464021463041739854825241, −7.082327813020646468263351450392, −6.20175008343993100344116502262, −4.64276444809272149099507095646, −3.87617653160446089878737533916, −3.066000306823247499981126984698, −2.19009190546501939262689647401, −0.01164194974963901742818800207,
1.68568155404266846287023500319, 2.66676927566192035301305414718, 3.639419181027727463484023197031, 4.69306341208632925690853316517, 5.83803393957990928954432562021, 6.96525201392373837835317408990, 7.81149567332986192681999083439, 8.59711742779257633771112582660, 9.29614884440539375740630540868, 10.21019435872422812544525220892, 11.7022028190849714338508936868, 12.31576841752299280679956758177, 13.12180498653512804856511703725, 13.641754881000956263586060089255, 15.139947871353972650501130460113, 15.41331253521259889109203921334, 16.27423175845161162798852679995, 17.41173150908568280403659416847, 18.462584862203670843192774621928, 19.00161862207085611564145902319, 19.8039784623896111886860553141, 20.51462653088714555191504584991, 21.15076280873183432335627791960, 22.30999095833625770589263297392, 23.27684683160844220540053670626