L(s) = 1 | + (0.996 + 0.0804i)3-s + (0.120 + 0.992i)5-s + (0.845 − 0.534i)7-s + (0.987 + 0.160i)9-s + (−0.987 + 0.160i)11-s + (0.0402 + 0.999i)15-s + (−0.845 + 0.534i)17-s + (0.5 − 0.866i)19-s + (0.885 − 0.464i)21-s + (0.5 + 0.866i)23-s + (−0.970 + 0.239i)25-s + (0.970 + 0.239i)27-s + (−0.632 + 0.774i)29-s + (0.970 + 0.239i)31-s + (−0.996 + 0.0804i)33-s + ⋯ |
L(s) = 1 | + (0.996 + 0.0804i)3-s + (0.120 + 0.992i)5-s + (0.845 − 0.534i)7-s + (0.987 + 0.160i)9-s + (−0.987 + 0.160i)11-s + (0.0402 + 0.999i)15-s + (−0.845 + 0.534i)17-s + (0.5 − 0.866i)19-s + (0.885 − 0.464i)21-s + (0.5 + 0.866i)23-s + (−0.970 + 0.239i)25-s + (0.970 + 0.239i)27-s + (−0.632 + 0.774i)29-s + (0.970 + 0.239i)31-s + (−0.996 + 0.0804i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.00929 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.00929 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.200935455 + 2.180573008i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.200935455 + 2.180573008i\) |
\(L(1)\) |
\(\approx\) |
\(1.540428853 + 0.4624810773i\) |
\(L(1)\) |
\(\approx\) |
\(1.540428853 + 0.4624810773i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.996 + 0.0804i)T \) |
| 5 | \( 1 + (0.120 + 0.992i)T \) |
| 7 | \( 1 + (0.845 - 0.534i)T \) |
| 11 | \( 1 + (-0.987 + 0.160i)T \) |
| 17 | \( 1 + (-0.845 + 0.534i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.632 + 0.774i)T \) |
| 31 | \( 1 + (0.970 + 0.239i)T \) |
| 37 | \( 1 + (0.278 + 0.960i)T \) |
| 41 | \( 1 + (-0.996 - 0.0804i)T \) |
| 43 | \( 1 + (-0.278 + 0.960i)T \) |
| 47 | \( 1 + (0.748 + 0.663i)T \) |
| 53 | \( 1 + (0.885 + 0.464i)T \) |
| 59 | \( 1 + (0.919 + 0.391i)T \) |
| 61 | \( 1 + (-0.0402 + 0.999i)T \) |
| 67 | \( 1 + (0.200 - 0.979i)T \) |
| 71 | \( 1 + (-0.428 - 0.903i)T \) |
| 73 | \( 1 + (-0.354 + 0.935i)T \) |
| 79 | \( 1 + (0.748 + 0.663i)T \) |
| 83 | \( 1 + (-0.568 - 0.822i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.799 + 0.600i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.12981138673453852735632544959, −21.155480438687257139682051409037, −20.692887365857469539215352937715, −20.21566858894761725993825735497, −18.995415769058226686998536909844, −18.398693699099119643133151110001, −17.539819236409637062864319812359, −16.422784177507128580500264079, −15.61847436302830354451350260088, −14.96378211933187982885486500757, −13.89902538283719103969294293572, −13.30330126218198312670843366363, −12.450904249735886106388185253269, −11.58630206988275295607142740491, −10.354637694643949823023282434664, −9.437116488096037213035653304347, −8.519354891937445063762781792521, −8.16322277945194598065200312602, −7.13540942258449636566799429980, −5.661276140112675502045781806887, −4.86899624570459491316493680474, −3.96681813522476931280521559654, −2.56496620634430749306792368777, −1.89838876689806737403417258412, −0.607824049859939153000939842029,
1.35180110209143336704685410819, 2.42448456907116660228457128465, 3.18541737775277919604223320209, 4.28752671149847877448480396553, 5.22423547006596579483815012423, 6.72755656639405201835695235439, 7.422072191023638110783446344363, 8.13446355557008289288601916302, 9.14897404127666900314011933352, 10.21271766637852847814220653131, 10.772960208587085639690216248007, 11.68491597740282316058939989549, 13.28946593853785766201714734659, 13.495494668308201867318483777889, 14.55356315890633626610120031892, 15.18700358769542370046528321347, 15.77195247044976672223760301212, 17.20650731416380289505310399945, 18.00731435889728865382965364873, 18.60576851858068771238379467078, 19.61082169814881069136015544921, 20.23475461916091156091089812537, 21.180629462597826090760785298037, 21.68632077131175833427503053516, 22.68846173372079943190334656006