| L(s) = 1 | + (−0.573 + 0.819i)2-s + (−0.815 + 0.578i)3-s + (−0.342 − 0.939i)4-s + (−0.00592 − 0.999i)6-s + (−0.984 − 0.176i)7-s + (0.966 + 0.257i)8-s + (0.331 − 0.943i)9-s + (0.523 − 0.851i)11-s + (0.822 + 0.568i)12-s + (−0.639 + 0.768i)13-s + (0.709 − 0.705i)14-s + (−0.765 + 0.643i)16-s + (−0.112 + 0.993i)17-s + (0.582 + 0.812i)18-s + (0.878 + 0.477i)19-s + ⋯ |
| L(s) = 1 | + (−0.573 + 0.819i)2-s + (−0.815 + 0.578i)3-s + (−0.342 − 0.939i)4-s + (−0.00592 − 0.999i)6-s + (−0.984 − 0.176i)7-s + (0.966 + 0.257i)8-s + (0.331 − 0.943i)9-s + (0.523 − 0.851i)11-s + (0.822 + 0.568i)12-s + (−0.639 + 0.768i)13-s + (0.709 − 0.705i)14-s + (−0.765 + 0.643i)16-s + (−0.112 + 0.993i)17-s + (0.582 + 0.812i)18-s + (0.878 + 0.477i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2675 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0179i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2675 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0179i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.006800623204 + 0.7596302286i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.006800623204 + 0.7596302286i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4570210522 + 0.3176755968i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4570210522 + 0.3176755968i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 107 | \( 1 \) |
| good | 2 | \( 1 + (-0.573 + 0.819i)T \) |
| 3 | \( 1 + (-0.815 + 0.578i)T \) |
| 7 | \( 1 + (-0.984 - 0.176i)T \) |
| 11 | \( 1 + (0.523 - 0.851i)T \) |
| 13 | \( 1 + (-0.639 + 0.768i)T \) |
| 17 | \( 1 + (-0.112 + 0.993i)T \) |
| 19 | \( 1 + (0.878 + 0.477i)T \) |
| 23 | \( 1 + (0.159 + 0.987i)T \) |
| 29 | \( 1 + (0.772 + 0.634i)T \) |
| 31 | \( 1 + (-0.461 - 0.886i)T \) |
| 37 | \( 1 + (-0.998 + 0.0474i)T \) |
| 41 | \( 1 + (0.854 + 0.518i)T \) |
| 43 | \( 1 + (-0.205 + 0.978i)T \) |
| 47 | \( 1 + (0.229 + 0.973i)T \) |
| 53 | \( 1 + (-0.945 - 0.325i)T \) |
| 59 | \( 1 + (0.364 + 0.931i)T \) |
| 61 | \( 1 + (-0.135 + 0.990i)T \) |
| 67 | \( 1 + (0.0533 - 0.998i)T \) |
| 71 | \( 1 + (0.297 - 0.954i)T \) |
| 73 | \( 1 + (0.217 + 0.976i)T \) |
| 79 | \( 1 + (0.171 + 0.985i)T \) |
| 83 | \( 1 + (0.553 - 0.832i)T \) |
| 89 | \( 1 + (0.952 - 0.303i)T \) |
| 97 | \( 1 + (0.657 - 0.753i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.83282614703001524230483340732, −18.03599212248994133556509532052, −17.550669590237705293984388546305, −16.966844176228330973938429504770, −16.074467798161769883288527153350, −15.64568036091500646823421528471, −14.2523624664382517823345561662, −13.49557391690643261171836837991, −12.73640981832202385815210606196, −12.19388679403278274008206946402, −11.85383619041035938475615634330, −10.79363615393005855305330938466, −10.1882942471005836423297735273, −9.55229416843065109173438821915, −8.809597367155080569880625752637, −7.7211043280029657636941631092, −7.05429343765445339925962553719, −6.591088134926220009883331215665, −5.280526316860658785019531729282, −4.74543797117086253890758141548, −3.58776858633699886158461587755, −2.67511316758772601080416849992, −2.03838783399632055669116727372, −0.78779562751734868525822815972, −0.320863925611239894118846095089,
0.74859006998734235681450346525, 1.572199828629298045173606488990, 3.202818732417136755587514445447, 3.98268359999346614487410631443, 4.8146685800661895205511924293, 5.80084514839664657215480557631, 6.17215928989685097677214732602, 6.91516041961483885212745358850, 7.68102997803222008581686950865, 8.811872878104329995421068145944, 9.43833983270846975670227603605, 9.89392743860048204782271843483, 10.73088451987835736463374836214, 11.40013533504406619648322217127, 12.2525508531047408325689486525, 13.14662262477914798251668290406, 14.044835970277241964459789347066, 14.66373954496631872661700952088, 15.55786624527225458402344861549, 16.12222081079957183214698454621, 16.6573116615728092259475594049, 17.12078617675409722222697381533, 17.8707591427209450724514710524, 18.68535768388814493773572391074, 19.4505296057374368270466411151