| L(s) = 1 | + (0.998 + 0.0603i)2-s + (0.963 + 0.268i)3-s + (0.992 + 0.120i)4-s + (0.728 + 0.685i)5-s + (0.945 + 0.326i)6-s + (−0.871 + 0.491i)7-s + (0.983 + 0.180i)8-s + (0.855 + 0.517i)9-s + (0.685 + 0.728i)10-s + (0.326 − 0.945i)11-s + (0.923 + 0.382i)12-s − i·13-s + (−0.899 + 0.437i)14-s + (0.517 + 0.855i)15-s + (0.970 + 0.239i)16-s + ⋯ |
| L(s) = 1 | + (0.998 + 0.0603i)2-s + (0.963 + 0.268i)3-s + (0.992 + 0.120i)4-s + (0.728 + 0.685i)5-s + (0.945 + 0.326i)6-s + (−0.871 + 0.491i)7-s + (0.983 + 0.180i)8-s + (0.855 + 0.517i)9-s + (0.685 + 0.728i)10-s + (0.326 − 0.945i)11-s + (0.923 + 0.382i)12-s − i·13-s + (−0.899 + 0.437i)14-s + (0.517 + 0.855i)15-s + (0.970 + 0.239i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2669 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.678 + 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2669 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.678 + 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(5.087376351 + 2.226930656i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(5.087376351 + 2.226930656i\) |
| \(L(1)\) |
\(\approx\) |
\(2.866380276 + 0.7362860134i\) |
| \(L(1)\) |
\(\approx\) |
\(2.866380276 + 0.7362860134i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 17 | \( 1 \) |
| 157 | \( 1 \) |
| good | 2 | \( 1 + (0.998 + 0.0603i)T \) |
| 3 | \( 1 + (0.963 + 0.268i)T \) |
| 5 | \( 1 + (0.728 + 0.685i)T \) |
| 7 | \( 1 + (-0.871 + 0.491i)T \) |
| 11 | \( 1 + (0.326 - 0.945i)T \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 + (-0.983 - 0.180i)T \) |
| 23 | \( 1 + (0.988 - 0.150i)T \) |
| 29 | \( 1 + (0.999 + 0.0302i)T \) |
| 31 | \( 1 + (-0.768 + 0.640i)T \) |
| 37 | \( 1 + (0.999 + 0.0302i)T \) |
| 41 | \( 1 + (0.592 + 0.805i)T \) |
| 43 | \( 1 + (-0.616 - 0.787i)T \) |
| 47 | \( 1 + (-0.935 - 0.354i)T \) |
| 53 | \( 1 + (-0.180 + 0.983i)T \) |
| 59 | \( 1 + (0.180 + 0.983i)T \) |
| 61 | \( 1 + (-0.542 + 0.839i)T \) |
| 67 | \( 1 + (-0.568 - 0.822i)T \) |
| 71 | \( 1 + (-0.977 + 0.209i)T \) |
| 73 | \( 1 + (0.963 + 0.268i)T \) |
| 79 | \( 1 + (-0.945 - 0.326i)T \) |
| 83 | \( 1 + (-0.297 - 0.954i)T \) |
| 89 | \( 1 + (0.464 - 0.885i)T \) |
| 97 | \( 1 + (0.728 + 0.685i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.51897911471626896011413714745, −18.86005197405246491268588873141, −17.71292895620494246244247471316, −16.86468328105697846029158157079, −16.34097787158462347752891840234, −15.524071495447976215892028126834, −14.6599702581583410195237727755, −14.24115821635451512124290052411, −13.43489810603863708265886327307, −12.82282075855216288640835436460, −12.625427738218570513664165474239, −11.583349599332643384685933491961, −10.49375175466302697038129644279, −9.67380483095050899990611541635, −9.30869667393819914114227853204, −8.26245082896515729577834962880, −7.285754332872249090600421698274, −6.62632064458233504277806854462, −6.16904757977012879008824569024, −4.83144288604923224948370137467, −4.320101126089029370538865309050, −3.57493648033645047286943577363, −2.56661774753421267184622133657, −1.92877831543878729521107551945, −1.15018554331057250218840408356,
1.34516982128632733843510397894, 2.46323153121559761663983147440, 2.9948810203238424785563166355, 3.37247270869870740816440536295, 4.4475973956879421172088013231, 5.423309618145790492376200982228, 6.15943929781164925259152805150, 6.730432780196870164808926328008, 7.59287917471965131583954613718, 8.58991998694423353796527931015, 9.21109147875053850590263964935, 10.34704803222437698761160442482, 10.54028984090626441939134889076, 11.5722668859429670475576230258, 12.7130834082294584044772817702, 13.12959574757906225837678752382, 13.66386970573629832015310218602, 14.55862512646637487466392381538, 14.92260021863652573822296098094, 15.60266910703769036665897440989, 16.3549215116159000762750753723, 17.028420149330129773457038685224, 18.19276811836392424472819371011, 18.90790132124860285789531100735, 19.62345005600458779807418513