| L(s) = 1 | + (−0.142 − 0.989i)3-s + (0.959 + 0.281i)5-s + (−0.654 + 0.755i)7-s + (−0.959 + 0.281i)9-s + (−0.841 + 0.540i)11-s + (−0.654 − 0.755i)13-s + (0.142 − 0.989i)15-s + (0.415 − 0.909i)17-s + (−0.415 − 0.909i)19-s + (0.841 + 0.540i)21-s + (0.841 + 0.540i)25-s + (0.415 + 0.909i)27-s + (−0.142 + 0.989i)31-s + (0.654 + 0.755i)33-s + (−0.841 + 0.540i)35-s + ⋯ |
| L(s) = 1 | + (−0.142 − 0.989i)3-s + (0.959 + 0.281i)5-s + (−0.654 + 0.755i)7-s + (−0.959 + 0.281i)9-s + (−0.841 + 0.540i)11-s + (−0.654 − 0.755i)13-s + (0.142 − 0.989i)15-s + (0.415 − 0.909i)17-s + (−0.415 − 0.909i)19-s + (0.841 + 0.540i)21-s + (0.841 + 0.540i)25-s + (0.415 + 0.909i)27-s + (−0.142 + 0.989i)31-s + (0.654 + 0.755i)33-s + (−0.841 + 0.540i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2668 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2668 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.263025933 + 0.1013936438i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.263025933 + 0.1013936438i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9602693224 - 0.1356640527i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9602693224 - 0.1356640527i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
| 29 | \( 1 \) |
| good | 3 | \( 1 + (-0.142 - 0.989i)T \) |
| 5 | \( 1 + (0.959 + 0.281i)T \) |
| 7 | \( 1 + (-0.654 + 0.755i)T \) |
| 11 | \( 1 + (-0.841 + 0.540i)T \) |
| 13 | \( 1 + (-0.654 - 0.755i)T \) |
| 17 | \( 1 + (0.415 - 0.909i)T \) |
| 19 | \( 1 + (-0.415 - 0.909i)T \) |
| 31 | \( 1 + (-0.142 + 0.989i)T \) |
| 37 | \( 1 + (-0.959 + 0.281i)T \) |
| 41 | \( 1 + (0.959 + 0.281i)T \) |
| 43 | \( 1 + (0.142 + 0.989i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.654 - 0.755i)T \) |
| 59 | \( 1 + (0.654 + 0.755i)T \) |
| 61 | \( 1 + (-0.142 + 0.989i)T \) |
| 67 | \( 1 + (0.841 + 0.540i)T \) |
| 71 | \( 1 + (-0.841 - 0.540i)T \) |
| 73 | \( 1 + (-0.415 - 0.909i)T \) |
| 79 | \( 1 + (0.654 + 0.755i)T \) |
| 83 | \( 1 + (-0.959 + 0.281i)T \) |
| 89 | \( 1 + (-0.142 - 0.989i)T \) |
| 97 | \( 1 + (-0.959 - 0.281i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.20860139584938609636610869742, −18.76586893089807148500567644999, −17.51791019557911553455025673927, −17.044639896404626499603961204298, −16.571303805360728561605879701274, −15.95017025523714412323961972222, −15.07165534343209401780092076921, −14.174790709992083285631285704906, −13.84955259318648929182395484265, −12.84058426339757562799000657223, −12.294290961514089298803341906574, −11.11868180596016318059848585171, −10.401783930592846223152772051309, −10.07841610923301180290666402860, −9.3205516080667307338402372900, −8.617797001205337507237394120568, −7.68707223701356007260984180887, −6.634818538823744342204075482628, −5.81957194067650273371906943177, −5.394549822560854872852852070, −4.29362388492404518126472487813, −3.764908817050151437980427636146, −2.74953964063935951684280413005, −1.88953711863933958148025117396, −0.50917281759248765561320807392,
0.80193852778029911964299508035, 2.027143277096586756342059968566, 2.67506718897028728820168565780, 3.04157383373521964855215450313, 4.870302807896697082955065849089, 5.43549937209182214972208098549, 6.04991324729519026818584258816, 7.00508889468862874364064844336, 7.34897268380156366704634099347, 8.46997838822135439804308969044, 9.1720054336553890164007672744, 9.99227065387782053996130534234, 10.60667801542039108141545375111, 11.61124234543481340827358648682, 12.416826667360587199250051130127, 12.90819147348262626071960113370, 13.43733925673385260605540354069, 14.283376059323072812419948587380, 14.98578436723601652843967310509, 15.78972458786543779869439662111, 16.637389231582702633271577950370, 17.5323490371608022741895431943, 17.98241526703161424110807715544, 18.41427334257808806045575890163, 19.30382378661115937308448936900