Properties

Label 1-2668-2668.2667-r0-0-0
Degree $1$
Conductor $2668$
Sign $1$
Analytic cond. $12.3901$
Root an. cond. $12.3901$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 7-s + 9-s − 11-s + 13-s − 15-s + 17-s − 19-s + 21-s + 25-s + 27-s + 31-s − 33-s − 35-s + 37-s + 39-s − 41-s − 43-s − 45-s + 47-s + 49-s + 51-s − 53-s + 55-s − 57-s − 59-s + ⋯
L(s)  = 1  + 3-s − 5-s + 7-s + 9-s − 11-s + 13-s − 15-s + 17-s − 19-s + 21-s + 25-s + 27-s + 31-s − 33-s − 35-s + 37-s + 39-s − 41-s − 43-s − 45-s + 47-s + 49-s + 51-s − 53-s + 55-s − 57-s − 59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2668 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2668 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(2668\)    =    \(2^{2} \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(12.3901\)
Root analytic conductor: \(12.3901\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2668} (2667, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 2668,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.454807590\)
\(L(\frac12)\) \(\approx\) \(2.454807590\)
\(L(1)\) \(\approx\) \(1.485506399\)
\(L(1)\) \(\approx\) \(1.485506399\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
29 \( 1 \)
good3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 - T \)
31 \( 1 + T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 - T \)
47 \( 1 + T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 + T \)
67 \( 1 + T \)
71 \( 1 - T \)
73 \( 1 - T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.12117298895402161238302924644, −18.77520949648345930635840687142, −18.214030682439480479595637292924, −17.194148432373403080752923122881, −16.25312996222773223317780347355, −15.624501016091290601383112182127, −15.046280472152532651258249782040, −14.49517291938984867056185384618, −13.65804968641239437788135283603, −12.99679982324745947033844710392, −12.205302849540163942944768180536, −11.40236487566133503806909934529, −10.645556646209376843699625981797, −10.04275719274133295037212630870, −8.818815402443816030651617504435, −8.28728503568267950805517713019, −7.89831098647238339952940957013, −7.19388486188989761795008992869, −6.12320297330885256876707468540, −4.96280721894586138749738122157, −4.37030651172204716360751351334, −3.545780148787458830614166856524, −2.83090415328324623849431433232, −1.850106516063915121338378328612, −0.91125877778430314079910888424, 0.91125877778430314079910888424, 1.850106516063915121338378328612, 2.83090415328324623849431433232, 3.545780148787458830614166856524, 4.37030651172204716360751351334, 4.96280721894586138749738122157, 6.12320297330885256876707468540, 7.19388486188989761795008992869, 7.89831098647238339952940957013, 8.28728503568267950805517713019, 8.818815402443816030651617504435, 10.04275719274133295037212630870, 10.645556646209376843699625981797, 11.40236487566133503806909934529, 12.205302849540163942944768180536, 12.99679982324745947033844710392, 13.65804968641239437788135283603, 14.49517291938984867056185384618, 15.046280472152532651258249782040, 15.624501016091290601383112182127, 16.25312996222773223317780347355, 17.194148432373403080752923122881, 18.214030682439480479595637292924, 18.77520949648345930635840687142, 19.12117298895402161238302924644

Graph of the $Z$-function along the critical line