L(s) = 1 | + (0.733 − 0.680i)2-s + (0.0747 − 0.997i)4-s + (0.826 − 0.563i)5-s + (−0.623 − 0.781i)8-s + (0.222 − 0.974i)10-s + (0.998 + 0.0498i)11-s + (−0.411 − 0.911i)13-s + (−0.988 − 0.149i)16-s + (0.969 − 0.246i)17-s + 19-s + (−0.5 − 0.866i)20-s + (0.766 − 0.642i)22-s + (−0.998 + 0.0498i)23-s + (0.365 − 0.930i)25-s + (−0.921 − 0.388i)26-s + ⋯ |
L(s) = 1 | + (0.733 − 0.680i)2-s + (0.0747 − 0.997i)4-s + (0.826 − 0.563i)5-s + (−0.623 − 0.781i)8-s + (0.222 − 0.974i)10-s + (0.998 + 0.0498i)11-s + (−0.411 − 0.911i)13-s + (−0.988 − 0.149i)16-s + (0.969 − 0.246i)17-s + 19-s + (−0.5 − 0.866i)20-s + (0.766 − 0.642i)22-s + (−0.998 + 0.0498i)23-s + (0.365 − 0.930i)25-s + (−0.921 − 0.388i)26-s + ⋯ |
Λ(s)=(=(2667s/2ΓR(s)L(s)(−0.821−0.569i)Λ(1−s)
Λ(s)=(=(2667s/2ΓR(s)L(s)(−0.821−0.569i)Λ(1−s)
Degree: |
1 |
Conductor: |
2667
= 3⋅7⋅127
|
Sign: |
−0.821−0.569i
|
Analytic conductor: |
12.3854 |
Root analytic conductor: |
12.3854 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2667(86,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2667, (0: ), −0.821−0.569i)
|
Particular Values
L(21) |
≈ |
0.9246161292−2.957793747i |
L(21) |
≈ |
0.9246161292−2.957793747i |
L(1) |
≈ |
1.406776431−1.199587140i |
L(1) |
≈ |
1.406776431−1.199587140i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 127 | 1 |
good | 2 | 1+(0.733−0.680i)T |
| 5 | 1+(0.826−0.563i)T |
| 11 | 1+(0.998+0.0498i)T |
| 13 | 1+(−0.411−0.911i)T |
| 17 | 1+(0.969−0.246i)T |
| 19 | 1+T |
| 23 | 1+(−0.998+0.0498i)T |
| 29 | 1+(−0.0249−0.999i)T |
| 31 | 1+(−0.969−0.246i)T |
| 37 | 1+(0.766−0.642i)T |
| 41 | 1+(−0.270+0.962i)T |
| 43 | 1+(−0.878−0.478i)T |
| 47 | 1+(−0.0747+0.997i)T |
| 53 | 1+(−0.124+0.992i)T |
| 59 | 1+(0.766−0.642i)T |
| 61 | 1+(0.365+0.930i)T |
| 67 | 1+(0.661+0.749i)T |
| 71 | 1+(−0.542−0.840i)T |
| 73 | 1+(0.955−0.294i)T |
| 79 | 1+(0.542+0.840i)T |
| 83 | 1+(−0.797−0.603i)T |
| 89 | 1+(−0.222−0.974i)T |
| 97 | 1+(0.853+0.521i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.72477725146585379344017033828, −18.63021847038276296065871570741, −18.12024470880323980864948382225, −17.30519545982427915091737984466, −16.62955283605117036735141526888, −16.25166511136130014648058353652, −15.10228915202315802647830164514, −14.37561278205479633673158046749, −14.217492463579677801807372895617, −13.43846936655846986711613490082, −12.53344130030032795878832485760, −11.83730944001569246234163417604, −11.25889520849437700419049190500, −10.07700904387764559809124247266, −9.46986846304527993306348581123, −8.68067224099412715949683939931, −7.69964184947154311685905836819, −6.884539785656305694089881668695, −6.49064651007472891308856645879, −5.55346130977974735559615918500, −5.03236051764585674472379096797, −3.81965722959584688503815813566, −3.38368483904237958904736699118, −2.26897132679529377419872210273, −1.4777870249508115692490199383,
0.74506806651008358376975718515, 1.489135955996207791888066360760, 2.372884502785875916314541057507, 3.24511099710097606804746763800, 4.07640615527687946311281372329, 4.938163476452066324259211312289, 5.69987444715572607574599393031, 6.08641078477551658989333697440, 7.215687855169849399305628074511, 8.14717828926954839673804779156, 9.29607540794661121002057174280, 9.73289995387089879486777503570, 10.25200631000736607851111256751, 11.362000965168697352166231217310, 11.96349511900907085204760183879, 12.61506083057229046778194171057, 13.25826831349852102823163465906, 14.06773924304322018212493425474, 14.44920960900267828295856876480, 15.30494613511837303663226110807, 16.227838120258989920403235955624, 16.857554508131284276485188760892, 17.79747411943375266627682689016, 18.28983616190881443883002588411, 19.24307456054857700924864086159