| L(s) = 1 | + (−0.826 − 0.563i)2-s + (0.365 + 0.930i)4-s + (0.623 + 0.781i)5-s + (0.222 − 0.974i)8-s + (−0.0747 − 0.997i)10-s + (−0.995 − 0.0995i)11-s + (−0.980 − 0.198i)13-s + (−0.733 + 0.680i)16-s + (0.878 − 0.478i)17-s + (0.5 − 0.866i)19-s + (−0.5 + 0.866i)20-s + (0.766 + 0.642i)22-s + (−0.995 + 0.0995i)23-s + (−0.222 + 0.974i)25-s + (0.698 + 0.715i)26-s + ⋯ |
| L(s) = 1 | + (−0.826 − 0.563i)2-s + (0.365 + 0.930i)4-s + (0.623 + 0.781i)5-s + (0.222 − 0.974i)8-s + (−0.0747 − 0.997i)10-s + (−0.995 − 0.0995i)11-s + (−0.980 − 0.198i)13-s + (−0.733 + 0.680i)16-s + (0.878 − 0.478i)17-s + (0.5 − 0.866i)19-s + (−0.5 + 0.866i)20-s + (0.766 + 0.642i)22-s + (−0.995 + 0.0995i)23-s + (−0.222 + 0.974i)25-s + (0.698 + 0.715i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.810 - 0.585i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.810 - 0.585i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1179861855 - 0.3648993567i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1179861855 - 0.3648993567i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6370361986 - 0.1062632797i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6370361986 - 0.1062632797i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (-0.826 - 0.563i)T \) |
| 5 | \( 1 + (0.623 + 0.781i)T \) |
| 11 | \( 1 + (-0.995 - 0.0995i)T \) |
| 13 | \( 1 + (-0.980 - 0.198i)T \) |
| 17 | \( 1 + (0.878 - 0.478i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.995 + 0.0995i)T \) |
| 29 | \( 1 + (-0.456 + 0.889i)T \) |
| 31 | \( 1 + (0.853 - 0.521i)T \) |
| 37 | \( 1 + (-0.939 + 0.342i)T \) |
| 41 | \( 1 + (0.878 - 0.478i)T \) |
| 43 | \( 1 + (-0.998 + 0.0498i)T \) |
| 47 | \( 1 + (0.623 - 0.781i)T \) |
| 53 | \( 1 + (0.969 + 0.246i)T \) |
| 59 | \( 1 + (0.173 - 0.984i)T \) |
| 61 | \( 1 + (0.222 + 0.974i)T \) |
| 67 | \( 1 + (-0.797 - 0.603i)T \) |
| 71 | \( 1 + (-0.995 + 0.0995i)T \) |
| 73 | \( 1 + (0.900 + 0.433i)T \) |
| 79 | \( 1 + (-0.411 + 0.911i)T \) |
| 83 | \( 1 + (-0.969 - 0.246i)T \) |
| 89 | \( 1 + (0.0747 - 0.997i)T \) |
| 97 | \( 1 + (-0.542 + 0.840i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.45050493494141246548037819293, −18.82053270898028907126030734416, −18.00000789466141210775562390851, −17.50132202050289934478905206140, −16.74812004602923502848442029100, −16.26782866882666442894394242298, −15.57216246695575423544103714447, −14.68125768624970030958998957102, −14.0626004693937602417429043904, −13.32384739895264603916913286469, −12.30545590591144113743531055888, −11.860046020107568242327168444756, −10.538023612080168052304166825628, −10.034448843986671430022778290074, −9.6015983621401830899096127658, −8.629217228398475351502223903643, −7.94081125763445687037566717596, −7.46482265927021036605049434227, −6.321226646549191308231725226557, −5.62416406789695584742380320760, −5.13221645543088200728818371672, −4.17061142574230609171416886374, −2.71622808595465206503181175791, −1.94682285649778600106571534513, −1.109582528327609238347759600106,
0.16339214230060440820591206714, 1.45891346261209562661817887488, 2.51525752526735498341690099063, 2.80612584284849853585171091229, 3.766242879606227956996844610190, 5.03437123923987891344569093529, 5.733066556533483739991798542, 6.92085232932593413985442567089, 7.35634358155608541779120887753, 8.09502891466930119219056679915, 9.05763452228367083488492110206, 9.9436275314199747377578031613, 10.14363240485655334885818861423, 10.96908953556182632041900064037, 11.767345376675148764473504574687, 12.405929446334872795978288168000, 13.35003124557954293397393306216, 13.871264556674559827042949317302, 14.862467595288222803275628866799, 15.60922253322918222631528423357, 16.34828269506262092866093955982, 17.18404882160738970896661609082, 17.749675178120293545316700724, 18.403202391094929363936535935614, 18.83328968785150464462659119078