L(s) = 1 | + (−0.955 − 0.294i)2-s + (0.826 + 0.563i)4-s + (0.900 + 0.433i)5-s + (−0.623 − 0.781i)8-s + (−0.733 − 0.680i)10-s + (−0.456 − 0.889i)11-s + (0.583 − 0.811i)13-s + (0.365 + 0.930i)16-s + (0.698 + 0.715i)17-s + (0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (0.173 + 0.984i)22-s + (0.456 − 0.889i)23-s + (0.623 + 0.781i)25-s + (−0.797 + 0.603i)26-s + ⋯ |
L(s) = 1 | + (−0.955 − 0.294i)2-s + (0.826 + 0.563i)4-s + (0.900 + 0.433i)5-s + (−0.623 − 0.781i)8-s + (−0.733 − 0.680i)10-s + (−0.456 − 0.889i)11-s + (0.583 − 0.811i)13-s + (0.365 + 0.930i)16-s + (0.698 + 0.715i)17-s + (0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (0.173 + 0.984i)22-s + (0.456 − 0.889i)23-s + (0.623 + 0.781i)25-s + (−0.797 + 0.603i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.992 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.992 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.249672840 + 0.1423319181i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.249672840 + 0.1423319181i\) |
\(L(1)\) |
\(\approx\) |
\(0.9917008767 - 0.04233853394i\) |
\(L(1)\) |
\(\approx\) |
\(0.9917008767 - 0.04233853394i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 127 | \( 1 \) |
good | 2 | \( 1 + (-0.955 - 0.294i)T \) |
| 5 | \( 1 + (0.900 + 0.433i)T \) |
| 11 | \( 1 + (-0.456 - 0.889i)T \) |
| 13 | \( 1 + (0.583 - 0.811i)T \) |
| 17 | \( 1 + (0.698 + 0.715i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.456 - 0.889i)T \) |
| 29 | \( 1 + (0.878 + 0.478i)T \) |
| 31 | \( 1 + (0.969 + 0.246i)T \) |
| 37 | \( 1 + (0.766 - 0.642i)T \) |
| 41 | \( 1 + (0.698 + 0.715i)T \) |
| 43 | \( 1 + (0.853 - 0.521i)T \) |
| 47 | \( 1 + (-0.900 + 0.433i)T \) |
| 53 | \( 1 + (0.921 - 0.388i)T \) |
| 59 | \( 1 + (0.939 + 0.342i)T \) |
| 61 | \( 1 + (-0.623 + 0.781i)T \) |
| 67 | \( 1 + (0.661 + 0.749i)T \) |
| 71 | \( 1 + (-0.456 + 0.889i)T \) |
| 73 | \( 1 + (0.222 - 0.974i)T \) |
| 79 | \( 1 + (-0.998 + 0.0498i)T \) |
| 83 | \( 1 + (-0.921 + 0.388i)T \) |
| 89 | \( 1 + (0.733 - 0.680i)T \) |
| 97 | \( 1 + (-0.0249 + 0.999i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.968981694494617653496468350060, −18.26060395538420416042647043545, −17.68042043265392696319643078116, −17.18613028043895174286196541717, −16.35634736715756415503877606618, −15.79177601983933274630617733096, −15.09534000626976318527256370469, −14.083961214746657912819997679001, −13.626664914400766094190827689768, −12.65714524617873207247025050753, −11.76562851781006277044261361999, −11.17194630187128306807664195663, −10.10923739639756162216419917775, −9.67732492844033734214651149122, −9.12670193988560287040531897555, −8.29095871067694382635750286646, −7.44614988107434992505257477742, −6.76571065746377814716714991505, −5.98819908451533355255942597984, −5.19130399986236967600459707769, −4.501607796647129507433760136376, −2.95702347290640440323382437480, −2.28025021199216712737415135349, −1.348153776608956860824290033425, −0.67417713830595740658162895601,
0.8272433759227997900867671845, 1.31306163628159685271679861495, 2.60602778441575892813427300105, 2.979795767277674969580942125626, 3.93281887027262396310351845718, 5.43848223143098727800849708167, 5.9954106425578954091134929900, 6.66505743858815731741873900339, 7.72115806549373872498195351514, 8.306968774217415705759695614625, 8.977511612053692129353471301577, 9.989085762534383349284498163141, 10.41134615700527827270099931157, 10.91763661970599227997911432428, 11.844679795230108100284857884865, 12.756870365631459819382975952521, 13.26004950709778685755409859458, 14.29371746745778769404314599130, 14.86136279623106043956247576281, 16.00100034693529596803870528206, 16.334488754287254903035584924523, 17.23702087968748734002960363207, 17.844719465157942481065085307511, 18.44534330666857189861461955733, 18.952525131837747956376658723934