L(s) = 1 | + (−0.955 + 0.294i)2-s + (0.826 − 0.563i)4-s + (0.826 + 0.563i)5-s + (−0.623 + 0.781i)8-s + (−0.955 − 0.294i)10-s + (−0.955 − 0.294i)11-s + (0.900 − 0.433i)13-s + (0.365 − 0.930i)16-s + (0.0747 − 0.997i)17-s + (0.5 + 0.866i)19-s + 20-s + 22-s + (−0.955 + 0.294i)23-s + (0.365 + 0.930i)25-s + (−0.733 + 0.680i)26-s + ⋯ |
L(s) = 1 | + (−0.955 + 0.294i)2-s + (0.826 − 0.563i)4-s + (0.826 + 0.563i)5-s + (−0.623 + 0.781i)8-s + (−0.955 − 0.294i)10-s + (−0.955 − 0.294i)11-s + (0.900 − 0.433i)13-s + (0.365 − 0.930i)16-s + (0.0747 − 0.997i)17-s + (0.5 + 0.866i)19-s + 20-s + 22-s + (−0.955 + 0.294i)23-s + (0.365 + 0.930i)25-s + (−0.733 + 0.680i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5145993091 + 0.7081941162i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5145993091 + 0.7081941162i\) |
\(L(1)\) |
\(\approx\) |
\(0.7186685695 + 0.2001628585i\) |
\(L(1)\) |
\(\approx\) |
\(0.7186685695 + 0.2001628585i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 127 | \( 1 \) |
good | 2 | \( 1 + (-0.955 + 0.294i)T \) |
| 5 | \( 1 + (0.826 + 0.563i)T \) |
| 11 | \( 1 + (-0.955 - 0.294i)T \) |
| 13 | \( 1 + (0.900 - 0.433i)T \) |
| 17 | \( 1 + (0.0747 - 0.997i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.955 + 0.294i)T \) |
| 29 | \( 1 + (-0.623 - 0.781i)T \) |
| 31 | \( 1 + (-0.826 + 0.563i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.900 + 0.433i)T \) |
| 43 | \( 1 + (0.623 + 0.781i)T \) |
| 47 | \( 1 + (0.0747 + 0.997i)T \) |
| 53 | \( 1 + (0.733 + 0.680i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.365 + 0.930i)T \) |
| 67 | \( 1 + (-0.988 + 0.149i)T \) |
| 71 | \( 1 + (0.222 - 0.974i)T \) |
| 73 | \( 1 + (-0.955 - 0.294i)T \) |
| 79 | \( 1 + (0.955 - 0.294i)T \) |
| 83 | \( 1 + (-0.222 + 0.974i)T \) |
| 89 | \( 1 + (0.955 - 0.294i)T \) |
| 97 | \( 1 + (-0.623 + 0.781i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.88160659465738026577831549076, −18.34610241596980858900736917177, −17.80826250213840193329501362289, −17.05354627440951141737321302892, −16.47565431553196068921931636282, −15.76748060214490312053305614762, −15.11945269711280961115727876075, −13.96458415116588781441371429641, −13.218928301460784645860905906093, −12.68850475645039820964009618767, −11.867254930657576094478259364216, −10.98038938348005590974129250431, −10.34160215958878250928953996408, −9.76782973570626898930796353524, −8.84026673605052304894689184570, −8.504505629083777015322853792196, −7.55551448119778622639899664302, −6.72306863980140662846555888650, −5.91571616747938785809508198355, −5.179579055339936838405357959201, −4.02757043908571767696657122102, −3.14016400748557045442569040283, −1.987835289246345296798061070968, −1.69650791255091749875523248799, −0.39087831306712139753473044401,
1.05586406091961210930061743328, 1.95376225203987822682373740771, 2.77639984083488043185029921185, 3.53263357521616008732858124400, 5.07824441013771261929094687077, 5.884470287510152520915440818745, 6.12585666984901489181736332151, 7.479589135369151665783988568100, 7.62748226369417295804634747888, 8.752913550039242773553278850005, 9.40082179073824618323626455616, 10.19684207130570041587078819384, 10.63475550637395279192459271791, 11.364081950545031950853803230902, 12.22914307755330454430901019420, 13.35875046244151493657550434710, 13.880618182363973846317745204786, 14.64944070763302394768337292936, 15.47620343205396271621963912139, 16.13939080245878359893153702095, 16.631099562609119059636865905, 17.71729368731991459007155716958, 18.174927329811815541417131615292, 18.460597603623934711762329848901, 19.30778978823767336181675925646