L(s) = 1 | + (−0.955 − 0.294i)2-s + (0.826 + 0.563i)4-s + (−0.0747 − 0.997i)5-s + (−0.623 − 0.781i)8-s + (−0.222 + 0.974i)10-s + (0.124 + 0.992i)11-s + (−0.270 + 0.962i)13-s + (0.365 + 0.930i)16-s + (−0.583 + 0.811i)17-s − 19-s + (0.5 − 0.866i)20-s + (0.173 − 0.984i)22-s + (−0.124 + 0.992i)23-s + (−0.988 + 0.149i)25-s + (0.542 − 0.840i)26-s + ⋯ |
L(s) = 1 | + (−0.955 − 0.294i)2-s + (0.826 + 0.563i)4-s + (−0.0747 − 0.997i)5-s + (−0.623 − 0.781i)8-s + (−0.222 + 0.974i)10-s + (0.124 + 0.992i)11-s + (−0.270 + 0.962i)13-s + (0.365 + 0.930i)16-s + (−0.583 + 0.811i)17-s − 19-s + (0.5 − 0.866i)20-s + (0.173 − 0.984i)22-s + (−0.124 + 0.992i)23-s + (−0.988 + 0.149i)25-s + (0.542 − 0.840i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.681 + 0.731i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.681 + 0.731i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2013285990 + 0.4624677666i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2013285990 + 0.4624677666i\) |
\(L(1)\) |
\(\approx\) |
\(0.6236428494 + 0.02620746161i\) |
\(L(1)\) |
\(\approx\) |
\(0.6236428494 + 0.02620746161i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 127 | \( 1 \) |
good | 2 | \( 1 + (-0.955 - 0.294i)T \) |
| 5 | \( 1 + (-0.0747 - 0.997i)T \) |
| 11 | \( 1 + (0.124 + 0.992i)T \) |
| 13 | \( 1 + (-0.270 + 0.962i)T \) |
| 17 | \( 1 + (-0.583 + 0.811i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.124 + 0.992i)T \) |
| 29 | \( 1 + (-0.661 - 0.749i)T \) |
| 31 | \( 1 + (0.583 + 0.811i)T \) |
| 37 | \( 1 + (0.173 - 0.984i)T \) |
| 41 | \( 1 + (0.995 + 0.0995i)T \) |
| 43 | \( 1 + (0.318 - 0.947i)T \) |
| 47 | \( 1 + (0.826 + 0.563i)T \) |
| 53 | \( 1 + (0.456 - 0.889i)T \) |
| 59 | \( 1 + (-0.173 + 0.984i)T \) |
| 61 | \( 1 + (0.988 + 0.149i)T \) |
| 67 | \( 1 + (0.853 - 0.521i)T \) |
| 71 | \( 1 + (0.797 + 0.603i)T \) |
| 73 | \( 1 + (0.733 + 0.680i)T \) |
| 79 | \( 1 + (-0.797 - 0.603i)T \) |
| 83 | \( 1 + (0.998 - 0.0498i)T \) |
| 89 | \( 1 + (0.222 + 0.974i)T \) |
| 97 | \( 1 + (0.980 + 0.198i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.625937321303579320308000209546, −18.3985968316936632335151945678, −17.47195382293826475257520883630, −16.90989718094909949782091074923, −16.05887737059486471830938988932, −15.42388702195311368711508314147, −14.76578751583802735135195370226, −14.179016885999555067203765240949, −13.26386625068091708486830577175, −12.26313066393644632178130555786, −11.27586772167497181111606345166, −10.93364221754807394599455682834, −10.24888944938710922720303676755, −9.48223971513070666985309930974, −8.60608005129773088475051170207, −7.97820639405797987965347206856, −7.239365903683310098477222297413, −6.41885036967208318035261619416, −5.98471557211298105488082928073, −4.93952779728930307052181701831, −3.707397244407467433484186305147, −2.707571724011841240120195328884, −2.316141927469587557030753195637, −0.85995823685541192082165618559, −0.15219530566409541368054090828,
0.93921185555963407935880637746, 1.933543734392290943548038388305, 2.27039787768279881393756676471, 3.95095350802826830112084050254, 4.18589345593216667037442523427, 5.40713614169620377513983847689, 6.36880203600604339153120278926, 7.14179680645838475891037585486, 7.88196730139248257322290908250, 8.67904535652277833253354303109, 9.255733678725214861346558374902, 9.81721976453999898172650239971, 10.72079404030484129758078459434, 11.4894168613493367074785484876, 12.24068445325018545833792136025, 12.695659747971730683999328650010, 13.4801052125912022742488723788, 14.62052397863480031652713172036, 15.421308510262053262809626142827, 15.97444820388550855543358907792, 16.81622005666520071569652312877, 17.39976313810570720426543483859, 17.69209359616213182313773053900, 18.881413094796264496276631127544, 19.4760632806807989455486444969