L(s) = 1 | + (0.309 − 0.951i)5-s + (0.809 − 0.587i)7-s + (0.309 + 0.951i)13-s + (0.309 − 0.951i)17-s + (−0.809 − 0.587i)19-s − 23-s + (−0.809 − 0.587i)25-s + (0.809 − 0.587i)29-s + (0.309 + 0.951i)31-s + (−0.309 − 0.951i)35-s + (0.809 − 0.587i)37-s + (−0.809 − 0.587i)41-s + 43-s + (0.809 + 0.587i)47-s + (0.309 − 0.951i)49-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)5-s + (0.809 − 0.587i)7-s + (0.309 + 0.951i)13-s + (0.309 − 0.951i)17-s + (−0.809 − 0.587i)19-s − 23-s + (−0.809 − 0.587i)25-s + (0.809 − 0.587i)29-s + (0.309 + 0.951i)31-s + (−0.309 − 0.951i)35-s + (0.809 − 0.587i)37-s + (−0.809 − 0.587i)41-s + 43-s + (0.809 + 0.587i)47-s + (0.309 − 0.951i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.530 - 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.530 - 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.191418341 - 0.6601962288i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.191418341 - 0.6601962288i\) |
\(L(1)\) |
\(\approx\) |
\(1.144035683 - 0.3055820048i\) |
\(L(1)\) |
\(\approx\) |
\(1.144035683 - 0.3055820048i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (0.309 - 0.951i)T \) |
| 7 | \( 1 + (0.809 - 0.587i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
| 17 | \( 1 + (0.309 - 0.951i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.309 + 0.951i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (-0.809 - 0.587i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (-0.809 + 0.587i)T \) |
| 61 | \( 1 + (0.309 - 0.951i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (-0.309 + 0.951i)T \) |
| 73 | \( 1 + (0.809 - 0.587i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.309 + 0.951i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.75485345658697207228994350254, −25.318974807033915202107392505321, −24.132789211601361943138541038565, −23.24015730449709703702087047217, −22.2092726615824456761719956928, −21.53528639541326301939505579243, −20.63405242635465758598571504265, −19.43319783606430810829400569557, −18.44643326100802810767826221991, −17.868250866853831760507195519439, −16.89020176930712590708928811469, −15.42916437367832853065306134835, −14.85577584526771562667713089686, −13.980584494636270912251264541149, −12.786955582877387123001662331489, −11.72368866788856664600021658242, −10.691623304306831091244699209187, −10.0047012009211476699191994792, −8.48026063358359119035452833668, −7.77746810791125818146388337168, −6.31109341506378078587320387054, −5.61624418519599555221190379466, −4.11561736446121772991719454623, −2.82482660767078649826099815198, −1.71322209331769165762374131955,
1.04333786603085578251994304044, 2.26485315094604718881368527777, 4.14781829725371756845274660794, 4.805973135653354682369615252036, 6.07785960333736089882280524007, 7.355058897471709149326810343, 8.438349121488961232824952198690, 9.28756316608019501401830902896, 10.44931489850437159672572061683, 11.565484539753447501328749599900, 12.41944158581162343166729248328, 13.73761943463880195501457237546, 14.11045700231342909242504860218, 15.61201947744269098675482126891, 16.50022096064788967376905955969, 17.32002778449408762628154498815, 18.13449812234842949490341956795, 19.39819407616826526541430765026, 20.337447501773433871439980192699, 21.07072403900069354296569300318, 21.774571352839374117677576130973, 23.27926721696545168431199422288, 23.84287731058887334799650653268, 24.70303566852514171488877484214, 25.59811218562035607463573013475