| L(s) = 1 | + (−0.809 − 0.587i)5-s + (−0.309 + 0.951i)7-s + (−0.809 + 0.587i)13-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s − 23-s + (0.309 + 0.951i)25-s + (−0.309 + 0.951i)29-s + (−0.809 + 0.587i)31-s + (0.809 − 0.587i)35-s + (−0.309 + 0.951i)37-s + (0.309 + 0.951i)41-s + 43-s + (−0.309 − 0.951i)47-s + (−0.809 − 0.587i)49-s + ⋯ |
| L(s) = 1 | + (−0.809 − 0.587i)5-s + (−0.309 + 0.951i)7-s + (−0.809 + 0.587i)13-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s − 23-s + (0.309 + 0.951i)25-s + (−0.309 + 0.951i)29-s + (−0.809 + 0.587i)31-s + (0.809 − 0.587i)35-s + (−0.309 + 0.951i)37-s + (0.309 + 0.951i)41-s + 43-s + (−0.309 − 0.951i)47-s + (−0.809 − 0.587i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2023201956 + 0.4081049971i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2023201956 + 0.4081049971i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6780405194 + 0.1297981426i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6780405194 + 0.1297981426i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 \) |
| good | 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 13 | \( 1 + (-0.809 + 0.587i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (0.309 - 0.951i)T \) |
| 61 | \( 1 + (-0.809 - 0.587i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.309 + 0.951i)T \) |
| 79 | \( 1 + (0.809 - 0.587i)T \) |
| 83 | \( 1 + (0.809 + 0.587i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.809 + 0.587i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.828097913411188228650389760694, −24.26451880470648626390291153305, −23.847253498078399299018361557787, −22.50476042944723481162675654124, −22.33545927173938201918621430556, −20.79626766227555928106242724491, −19.65056529503557184648321041555, −19.5137469753746026445443391702, −18.032121373138983906450605755916, −17.2744877563730168560071255894, −16.09811944947947221699361544763, −15.30090114942282377844877816488, −14.34295400056373797317358678815, −13.30241684869175950264381451758, −12.2844193864403885137514286786, −11.12134266618424135153148854501, −10.44737560962674530217823487248, −9.2857549975204144358094470738, −7.8127732438795286993920272479, −7.25638244710856960640887963641, −6.09418776196175716051576803829, −4.503568703680838857121830837807, −3.65820250296180308755756803076, −2.385738212387472266843589785267, −0.29856266785792178565635919860,
1.824578292371814410826531419284, 3.22174453013562010114623644719, 4.48430331804167238738340193848, 5.464516314479897779283625587896, 6.78440620463908883522734182524, 7.91631282116276392466487490581, 8.90822044173288044783990354496, 9.72227686347032811290031241735, 11.230358553704136839090299894701, 12.11303095835736673322389969875, 12.68334371617260330021577084956, 14.075941068380200859984631007152, 15.09859841562602395919186252549, 16.017944757446690886099201466624, 16.62752348369246314148949953356, 18.00223901531285181992149326148, 18.85317952521474559119995014107, 19.76669167163103018404027934816, 20.51311995244085340946704993571, 21.74906410033805887356098389819, 22.41322611527905999015730348481, 23.53728701860615357192996669226, 24.399860173008280796423329122471, 25.03955957451859259635239460018, 26.2171933864863452441909254328