L(s) = 1 | + (0.309 + 0.951i)5-s + (−0.809 − 0.587i)7-s + (0.309 − 0.951i)13-s + (0.309 + 0.951i)17-s + (0.809 − 0.587i)19-s + 23-s + (−0.809 + 0.587i)25-s + (0.809 + 0.587i)29-s + (−0.309 + 0.951i)31-s + (0.309 − 0.951i)35-s + (0.809 + 0.587i)37-s + (−0.809 + 0.587i)41-s − 43-s + (−0.809 + 0.587i)47-s + (0.309 + 0.951i)49-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)5-s + (−0.809 − 0.587i)7-s + (0.309 − 0.951i)13-s + (0.309 + 0.951i)17-s + (0.809 − 0.587i)19-s + 23-s + (−0.809 + 0.587i)25-s + (0.809 + 0.587i)29-s + (−0.309 + 0.951i)31-s + (0.309 − 0.951i)35-s + (0.809 + 0.587i)37-s + (−0.809 + 0.587i)41-s − 43-s + (−0.809 + 0.587i)47-s + (0.309 + 0.951i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.540755860 + 0.8537733332i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.540755860 + 0.8537733332i\) |
\(L(1)\) |
\(\approx\) |
\(1.092361551 + 0.1958657819i\) |
\(L(1)\) |
\(\approx\) |
\(1.092361551 + 0.1958657819i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 + (-0.809 - 0.587i)T \) |
| 13 | \( 1 + (0.309 - 0.951i)T \) |
| 17 | \( 1 + (0.309 + 0.951i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.809 + 0.587i)T \) |
| 31 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 + (0.809 + 0.587i)T \) |
| 41 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.809 + 0.587i)T \) |
| 61 | \( 1 + (0.309 + 0.951i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.309 + 0.951i)T \) |
| 73 | \( 1 + (0.809 + 0.587i)T \) |
| 79 | \( 1 + (0.309 - 0.951i)T \) |
| 83 | \( 1 + (0.309 + 0.951i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.17337959792664609023272401108, −24.84174818988525659597248042275, −23.63211481705869093130462593068, −22.77075782187420436503131425229, −21.70072619212870633456549551413, −20.9209671496187665321594480176, −20.038422691907122328878422357354, −18.96308364386970724968975787505, −18.21425285876024571870360520938, −16.84486045110357988633555569551, −16.31722863945521940403884079471, −15.39767994234695600200172194304, −14.02139715912218390064972328774, −13.23029253018191759947550182207, −12.24368549154826299022662124399, −11.47493873133157921448390514736, −9.79732295299710158202357662170, −9.30700810484573449332926498147, −8.26066266542916349666669495714, −6.87793197813427120271617567916, −5.786675797128892993404927399131, −4.83594530357704387532202662100, −3.47895083803210121706563959635, −2.09942230432361039902249775792, −0.6549911648100846326583507446,
1.09964655373959141251811132583, 2.89237326719512227131642487755, 3.53749849352347772035601873760, 5.20741682276156566762791502126, 6.41685414436385326108457819412, 7.12478767139540180182056250173, 8.36678242963936777376407393057, 9.78774974318905550590638789412, 10.41440011999991167442271937159, 11.35001192550195465574146305172, 12.79578468524988407715168623096, 13.48206750890998453360928106792, 14.57211283901659653741751430367, 15.433740769545459378796359133773, 16.489626108359900781610992103914, 17.54628414178923510522843837917, 18.32505409058865883959115312761, 19.39635843682016871143858618164, 20.077707693938791141554673993888, 21.34311194953089258318072998502, 22.20145126448556158591744363894, 22.97053557482237617944850665154, 23.70513263622535927524328219685, 25.16990093721756612537647367992, 25.70057801463156666451588129774