L(s) = 1 | + (−0.294 − 0.955i)2-s + (−0.826 + 0.563i)4-s + (0.733 + 0.680i)5-s + (0.826 + 0.563i)7-s + (0.781 + 0.623i)8-s + (0.433 − 0.900i)10-s + (−0.930 − 0.365i)11-s + (0.988 − 0.149i)13-s + (0.294 − 0.955i)14-s + (0.365 − 0.930i)16-s − i·17-s + (−0.433 + 0.900i)19-s + (−0.988 − 0.149i)20-s + (−0.0747 + 0.997i)22-s + (0.955 + 0.294i)23-s + ⋯ |
L(s) = 1 | + (−0.294 − 0.955i)2-s + (−0.826 + 0.563i)4-s + (0.733 + 0.680i)5-s + (0.826 + 0.563i)7-s + (0.781 + 0.623i)8-s + (0.433 − 0.900i)10-s + (−0.930 − 0.365i)11-s + (0.988 − 0.149i)13-s + (0.294 − 0.955i)14-s + (0.365 − 0.930i)16-s − i·17-s + (−0.433 + 0.900i)19-s + (−0.988 − 0.149i)20-s + (−0.0747 + 0.997i)22-s + (0.955 + 0.294i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.967 + 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.967 + 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.773526488 + 0.2271399651i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.773526488 + 0.2271399651i\) |
\(L(1)\) |
\(\approx\) |
\(1.080288006 - 0.1525186045i\) |
\(L(1)\) |
\(\approx\) |
\(1.080288006 - 0.1525186045i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (-0.294 - 0.955i)T \) |
| 5 | \( 1 + (0.733 + 0.680i)T \) |
| 7 | \( 1 + (0.826 + 0.563i)T \) |
| 11 | \( 1 + (-0.930 - 0.365i)T \) |
| 13 | \( 1 + (0.988 - 0.149i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (-0.433 + 0.900i)T \) |
| 23 | \( 1 + (0.955 + 0.294i)T \) |
| 31 | \( 1 + (-0.680 + 0.733i)T \) |
| 37 | \( 1 + (0.781 + 0.623i)T \) |
| 41 | \( 1 + (-0.866 - 0.5i)T \) |
| 43 | \( 1 + (0.680 + 0.733i)T \) |
| 47 | \( 1 + (0.930 + 0.365i)T \) |
| 53 | \( 1 + (-0.222 + 0.974i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.563 - 0.826i)T \) |
| 67 | \( 1 + (-0.365 - 0.930i)T \) |
| 71 | \( 1 + (-0.623 - 0.781i)T \) |
| 73 | \( 1 + (0.974 - 0.222i)T \) |
| 79 | \( 1 + (-0.149 + 0.988i)T \) |
| 83 | \( 1 + (0.0747 + 0.997i)T \) |
| 89 | \( 1 + (0.974 + 0.222i)T \) |
| 97 | \( 1 + (-0.997 + 0.0747i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.68255586952537630763072192394, −24.73197833981629840720737776601, −23.67008304770134627130831427842, −23.52374674850214272283201877348, −21.95534736686305943733344389442, −21.0223229059375798624462011942, −20.206911176120728607308280761472, −18.84961487443123646406851105002, −17.89250362467853975979957226382, −17.27470816121511037218002378430, −16.46728730492152106433053907837, −15.388373539479383295536707411909, −14.49882896235833803101683392671, −13.35379398906071662585589054681, −12.95859414524266771429158603578, −11.01436208986038910694956319700, −10.21990610789806729909820546606, −8.96654189487507547457964831266, −8.285880637321972847687629511668, −7.19110667815339595839265178733, −5.988751050050016034222175201781, −5.05662990031384506289097932605, −4.155674999986242571835011347956, −1.916072467802732299743888554158, −0.70202687104289180477971771045,
1.25607900737664128225862694076, 2.40812369523245342766512063218, 3.316032262358198438963825659965, 4.91707689959419309536422667275, 5.86514652510624684698239976428, 7.516491547124941453424114656, 8.54297482081461367473192740795, 9.48741625625765802896958758682, 10.727473398847183063665418076021, 11.08658993055711277601221612004, 12.35169248225683099364184027483, 13.44913346232779600500096642569, 14.13188769166925775728196891884, 15.30298179106688871187283988776, 16.65867250694591815507084350457, 17.81621609363324706624633545515, 18.41081471615431772785284350118, 18.9059143849563886187404570495, 20.50361386932482052344721237066, 21.06713196356198760605929797048, 21.71702277422165719037957416581, 22.76447739686741051722812245070, 23.600613847652650992519502137613, 25.130994133140660204148696094321, 25.70131655700610897265664999673