| L(s) = 1 | + (0.294 − 0.955i)2-s + (−0.826 − 0.563i)4-s + (−0.733 + 0.680i)5-s + (0.826 − 0.563i)7-s + (−0.781 + 0.623i)8-s + (0.433 + 0.900i)10-s + (0.930 − 0.365i)11-s + (0.988 + 0.149i)13-s + (−0.294 − 0.955i)14-s + (0.365 + 0.930i)16-s − i·17-s + (−0.433 − 0.900i)19-s + (0.988 − 0.149i)20-s + (−0.0747 − 0.997i)22-s + (−0.955 + 0.294i)23-s + ⋯ |
| L(s) = 1 | + (0.294 − 0.955i)2-s + (−0.826 − 0.563i)4-s + (−0.733 + 0.680i)5-s + (0.826 − 0.563i)7-s + (−0.781 + 0.623i)8-s + (0.433 + 0.900i)10-s + (0.930 − 0.365i)11-s + (0.988 + 0.149i)13-s + (−0.294 − 0.955i)14-s + (0.365 + 0.930i)16-s − i·17-s + (−0.433 − 0.900i)19-s + (0.988 − 0.149i)20-s + (−0.0747 − 0.997i)22-s + (−0.955 + 0.294i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7609945436 - 0.9845509073i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7609945436 - 0.9845509073i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9378573732 - 0.6081157924i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9378573732 - 0.6081157924i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 2 | \( 1 + (0.294 - 0.955i)T \) |
| 5 | \( 1 + (-0.733 + 0.680i)T \) |
| 7 | \( 1 + (0.826 - 0.563i)T \) |
| 11 | \( 1 + (0.930 - 0.365i)T \) |
| 13 | \( 1 + (0.988 + 0.149i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (-0.433 - 0.900i)T \) |
| 23 | \( 1 + (-0.955 + 0.294i)T \) |
| 31 | \( 1 + (-0.680 - 0.733i)T \) |
| 37 | \( 1 + (0.781 - 0.623i)T \) |
| 41 | \( 1 + (0.866 - 0.5i)T \) |
| 43 | \( 1 + (0.680 - 0.733i)T \) |
| 47 | \( 1 + (-0.930 + 0.365i)T \) |
| 53 | \( 1 + (0.222 + 0.974i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.563 + 0.826i)T \) |
| 67 | \( 1 + (-0.365 + 0.930i)T \) |
| 71 | \( 1 + (0.623 - 0.781i)T \) |
| 73 | \( 1 + (0.974 + 0.222i)T \) |
| 79 | \( 1 + (-0.149 - 0.988i)T \) |
| 83 | \( 1 + (-0.0747 + 0.997i)T \) |
| 89 | \( 1 + (-0.974 + 0.222i)T \) |
| 97 | \( 1 + (-0.997 - 0.0747i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.90086818198910114659531057899, −25.06568792406028702221917379245, −24.32313851905788532606864059326, −23.57418814047132567283500786925, −22.77185129332973138603421931604, −21.65991720550731011606715108195, −20.83772870687859845774794487898, −19.70365045796557217516620350569, −18.53083668711470622626731010310, −17.65619687032335937141333318286, −16.68565497287764743230884343256, −15.909880271432985208213512910123, −14.91135592283173147767526589856, −14.32290035199040539729975182907, −12.89357439400322150235623249038, −12.2308906833123028611171590195, −11.19214563679405438918887275586, −9.49548540480008685868190253364, −8.30236887628294825784433043849, −8.12639514784896432708771642383, −6.54860875092280824231601022740, −5.590901386619624795844723500405, −4.39988175178550000678317737925, −3.70598881912847819685507752153, −1.50228928598313869882579359462,
0.92212965562841012128621564365, 2.40954863927203246179995120089, 3.780698861353993030594951453031, 4.32215593062828364716626172937, 5.85465943806003446718639042449, 7.17062032027423736705898284207, 8.383007152021123529235632677924, 9.4303009700205359541343997290, 10.85640388532416595441473772236, 11.233142755327446247777105385565, 12.05065403760103087719202528291, 13.50820016379089440565607674453, 14.17815230333716912293862483150, 15.01929248515754707432477066694, 16.251605000046670071515571505745, 17.66945305369404404790222326425, 18.35196526747418753321184803678, 19.37356704516523937741073711048, 20.07925362841881933851278252326, 20.97033134182338346962904095401, 21.98345898480979378469205882137, 22.75701474914065402749991377484, 23.633399026350667673661109923584, 24.279320284538239986732575724741, 25.86670259598828635424234562204