| L(s) = 1 | + (−0.680 − 0.733i)2-s + (−0.0747 + 0.997i)4-s + (0.955 + 0.294i)5-s + (0.0747 + 0.997i)7-s + (0.781 − 0.623i)8-s + (−0.433 − 0.900i)10-s + (0.149 − 0.988i)11-s + (−0.365 − 0.930i)13-s + (0.680 − 0.733i)14-s + (−0.988 − 0.149i)16-s + i·17-s + (0.433 + 0.900i)19-s + (−0.365 + 0.930i)20-s + (−0.826 + 0.563i)22-s + (0.733 + 0.680i)23-s + ⋯ |
| L(s) = 1 | + (−0.680 − 0.733i)2-s + (−0.0747 + 0.997i)4-s + (0.955 + 0.294i)5-s + (0.0747 + 0.997i)7-s + (0.781 − 0.623i)8-s + (−0.433 − 0.900i)10-s + (0.149 − 0.988i)11-s + (−0.365 − 0.930i)13-s + (0.680 − 0.733i)14-s + (−0.988 − 0.149i)16-s + i·17-s + (0.433 + 0.900i)19-s + (−0.365 + 0.930i)20-s + (−0.826 + 0.563i)22-s + (0.733 + 0.680i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.026854405 - 0.03148635867i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.026854405 - 0.03148635867i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9086016279 - 0.1075338805i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9086016279 - 0.1075338805i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 2 | \( 1 + (-0.680 - 0.733i)T \) |
| 5 | \( 1 + (0.955 + 0.294i)T \) |
| 7 | \( 1 + (0.0747 + 0.997i)T \) |
| 11 | \( 1 + (0.149 - 0.988i)T \) |
| 13 | \( 1 + (-0.365 - 0.930i)T \) |
| 17 | \( 1 + iT \) |
| 19 | \( 1 + (0.433 + 0.900i)T \) |
| 23 | \( 1 + (0.733 + 0.680i)T \) |
| 31 | \( 1 + (0.294 - 0.955i)T \) |
| 37 | \( 1 + (-0.781 + 0.623i)T \) |
| 41 | \( 1 + (0.866 + 0.5i)T \) |
| 43 | \( 1 + (-0.294 - 0.955i)T \) |
| 47 | \( 1 + (-0.149 + 0.988i)T \) |
| 53 | \( 1 + (0.222 + 0.974i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.997 - 0.0747i)T \) |
| 67 | \( 1 + (0.988 - 0.149i)T \) |
| 71 | \( 1 + (0.623 - 0.781i)T \) |
| 73 | \( 1 + (-0.974 - 0.222i)T \) |
| 79 | \( 1 + (-0.930 - 0.365i)T \) |
| 83 | \( 1 + (-0.826 - 0.563i)T \) |
| 89 | \( 1 + (0.974 - 0.222i)T \) |
| 97 | \( 1 + (-0.563 + 0.826i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.03951933216529887821024899008, −24.93921025152976517120622050592, −24.38168091434235293812772439070, −23.28874712054256267271452149416, −22.51583107671231621974771203866, −21.11589030309630017348697134698, −20.2562653309536004730269159648, −19.421600813854596456405539069935, −18.11570005383515819808828572625, −17.517765277936022821091172257074, −16.74532525406839025222317060285, −15.928221055714633404816701787194, −14.52477141782753408172862087289, −13.994456799648247811108527901459, −12.95916909150887159901733414648, −11.41448075853668886245181291871, −10.22691138986506024749221832047, −9.56340728203335518597071945338, −8.69336047755218775462063783334, −7.03273136651148854693211488380, −6.91239667052654854334565281944, −5.22833961055318779083151103377, −4.51027817970663472208437772827, −2.30520831410998909338322082489, −1.05416794485816519865711021291,
1.38864481190021920141353509037, 2.56768514471626678155251688496, 3.4740636233616614679921975272, 5.339466082518265282825337851941, 6.24872126722584308079633220632, 7.80753278902902957512904259738, 8.72859235962658978119019776350, 9.657835088529193682761935809904, 10.52934497622839980723396016556, 11.49822922014225346456274281771, 12.57788724971532707717635029863, 13.38235465515699810331810317825, 14.58216341041001892360664708560, 15.74689235244749513253191437049, 17.01007081309435149939399911756, 17.60157294750982988293866428477, 18.68024246207727881371759682177, 19.12087948991137441890786033627, 20.44960700798432080378142554299, 21.33766945539603511392862735514, 21.92187227564303194794192255179, 22.67705812152283679841054645113, 24.443063905249806056621848878958, 25.1384957773990283606481264871, 25.90299484966807551710646607137