L(s) = 1 | + (0.951 − 0.309i)3-s − 7-s + (0.809 − 0.587i)9-s + (0.587 − 0.809i)11-s + (0.951 + 0.309i)17-s + (0.951 + 0.309i)19-s + (−0.951 + 0.309i)21-s + (−0.587 + 0.809i)23-s + (0.587 − 0.809i)27-s + (0.309 + 0.951i)29-s + (0.951 + 0.309i)31-s + (0.309 − 0.951i)33-s + (−0.809 + 0.587i)37-s + (−0.587 − 0.809i)41-s − i·43-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)3-s − 7-s + (0.809 − 0.587i)9-s + (0.587 − 0.809i)11-s + (0.951 + 0.309i)17-s + (0.951 + 0.309i)19-s + (−0.951 + 0.309i)21-s + (−0.587 + 0.809i)23-s + (0.587 − 0.809i)27-s + (0.309 + 0.951i)29-s + (0.951 + 0.309i)31-s + (0.309 − 0.951i)33-s + (−0.809 + 0.587i)37-s + (−0.587 − 0.809i)41-s − i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.937 - 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.937 - 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.403926340 - 0.4335100002i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.403926340 - 0.4335100002i\) |
\(L(1)\) |
\(\approx\) |
\(1.475054183 - 0.1790824555i\) |
\(L(1)\) |
\(\approx\) |
\(1.475054183 - 0.1790824555i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.951 - 0.309i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (0.587 - 0.809i)T \) |
| 17 | \( 1 + (0.951 + 0.309i)T \) |
| 19 | \( 1 + (0.951 + 0.309i)T \) |
| 23 | \( 1 + (-0.587 + 0.809i)T \) |
| 29 | \( 1 + (0.309 + 0.951i)T \) |
| 31 | \( 1 + (0.951 + 0.309i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 41 | \( 1 + (-0.587 - 0.809i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (0.951 - 0.309i)T \) |
| 59 | \( 1 + (0.587 + 0.809i)T \) |
| 61 | \( 1 + (0.809 + 0.587i)T \) |
| 67 | \( 1 + (-0.309 + 0.951i)T \) |
| 71 | \( 1 + (-0.951 + 0.309i)T \) |
| 73 | \( 1 + (-0.809 - 0.587i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 + (0.587 - 0.809i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.43270408688384126236017327124, −18.92078037310116501619015949423, −18.149044219368062057398744155933, −17.191159696638443327755793104055, −16.41943588962734068459182431981, −15.77274863559150961235616698963, −15.23219077580165539830039477550, −14.31332287106515301578964738751, −13.868962369125986235736028166156, −13.058398424064107023669994760829, −12.29833206417814964837408337314, −11.69548744386396684099470332498, −10.359691758344779574940978989527, −9.880253876493389864072177816055, −9.41164115528087350865350521929, −8.55959752187072452576820145783, −7.720239396127333956040058446635, −7.030583098573920084010248712395, −6.27725671650668981822683032770, −5.19333947996680965626548697841, −4.30466446756744532082810164047, −3.59487074399181316614414438842, −2.84524421277002643249878014629, −2.07862958552533917118794647538, −0.89949195930638611645179204795,
0.92345582538669303316509290516, 1.689042840014310917638207763790, 3.00480115302346706726435402000, 3.32336892801646279432811007927, 4.04925602504465166493626141749, 5.37446659838912525778359611268, 6.14737834420769744839750150460, 6.94457554456649121827482994872, 7.595600064858411747969977267746, 8.563435083472622273089348461374, 8.98079825777251635620292502249, 10.07989578592857105444459708626, 10.177631664693541340943832871465, 11.87980673768479526985793692875, 11.98139965671394250283275018182, 13.17480532221893816882313101086, 13.55290774085304838641046420633, 14.3113231857573125298287704522, 14.89841179196641002664029346123, 16.06583689399573392062198236418, 16.11150437423882458759817934703, 17.22600408439358840742948783419, 18.08911479634990479528693374321, 18.88182058533449827994019801983, 19.31825016989964546749431205302