L(s) = 1 | + (0.207 + 0.978i)3-s + (−0.866 − 0.5i)7-s + (−0.913 + 0.406i)9-s + (−0.913 − 0.406i)11-s + (0.207 − 0.978i)17-s + (−0.978 − 0.207i)19-s + (0.309 − 0.951i)21-s + (−0.406 + 0.913i)23-s + (−0.587 − 0.809i)27-s + (−0.978 + 0.207i)29-s + (0.309 + 0.951i)31-s + (0.207 − 0.978i)33-s + (−0.994 − 0.104i)37-s + (0.104 − 0.994i)41-s + (0.866 + 0.5i)43-s + ⋯ |
L(s) = 1 | + (0.207 + 0.978i)3-s + (−0.866 − 0.5i)7-s + (−0.913 + 0.406i)9-s + (−0.913 − 0.406i)11-s + (0.207 − 0.978i)17-s + (−0.978 − 0.207i)19-s + (0.309 − 0.951i)21-s + (−0.406 + 0.913i)23-s + (−0.587 − 0.809i)27-s + (−0.978 + 0.207i)29-s + (0.309 + 0.951i)31-s + (0.207 − 0.978i)33-s + (−0.994 − 0.104i)37-s + (0.104 − 0.994i)41-s + (0.866 + 0.5i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.825 + 0.564i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.825 + 0.564i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9649288293 + 0.2980933129i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9649288293 + 0.2980933129i\) |
\(L(1)\) |
\(\approx\) |
\(0.8327822059 + 0.1948853209i\) |
\(L(1)\) |
\(\approx\) |
\(0.8327822059 + 0.1948853209i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.207 + 0.978i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.913 - 0.406i)T \) |
| 17 | \( 1 + (0.207 - 0.978i)T \) |
| 19 | \( 1 + (-0.978 - 0.207i)T \) |
| 23 | \( 1 + (-0.406 + 0.913i)T \) |
| 29 | \( 1 + (-0.978 + 0.207i)T \) |
| 31 | \( 1 + (0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.994 - 0.104i)T \) |
| 41 | \( 1 + (0.104 - 0.994i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + (0.951 + 0.309i)T \) |
| 53 | \( 1 + (0.951 + 0.309i)T \) |
| 59 | \( 1 + (0.913 - 0.406i)T \) |
| 61 | \( 1 + (0.104 + 0.994i)T \) |
| 67 | \( 1 + (-0.743 - 0.669i)T \) |
| 71 | \( 1 + (0.669 + 0.743i)T \) |
| 73 | \( 1 + (-0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.951 + 0.309i)T \) |
| 89 | \( 1 + (0.913 + 0.406i)T \) |
| 97 | \( 1 + (0.743 - 0.669i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.096723693424287062014972335246, −18.73787629682004429615771498030, −18.087757519814241061815514239729, −17.1690219850494050682107007351, −16.663883684004439046713953220807, −15.59902734363733360805096765946, −15.04529144954098570252842412690, −14.32144515967227019384350523900, −13.3059126521288162846856557400, −12.86179988052782355105901669574, −12.40438459735335747209913951630, −11.58772984831812851537543587822, −10.55568928909115671918504864227, −9.956882580255827174585643728767, −8.91261634676915385636949662439, −8.35562963515238481196599557098, −7.59304603548521217547700947216, −6.79419545186938513932376045482, −6.03639549398097811399545163094, −5.55556270619095344399948686040, −4.25238428349219891944552809658, −3.37859515486717455983952900025, −2.34757724986202630037968330134, −2.033524511704114403957859133770, −0.55936512460273756448060841062,
0.53944573670179868734622016793, 2.166073854415195588226840095521, 3.01472399647661018245034240985, 3.63237313908254899518101505375, 4.44569813477275622136265966975, 5.3618328131868339820184669166, 5.92951510319967688723231878025, 7.07636360517629089682362674869, 7.71316154061700512359233282294, 8.79320153667195912527919707360, 9.23499945213662431655995721318, 10.221892808538757470991398495973, 10.52124386930948220737996944441, 11.34455138722130668667758313095, 12.27126367924714966142821454884, 13.18967372164670683493875528170, 13.76380922407435397215449667501, 14.423917689822484827839853773272, 15.466059425148008512314901849027, 15.83776056230214345946415722773, 16.44468697527277958372023105719, 17.157298124469175271156322277786, 17.9238765982817605526746990130, 18.98417308411025431411412895903, 19.43043763434043992484505310200