L(s) = 1 | + (0.913 − 0.406i)3-s + (0.5 + 0.866i)7-s + (0.669 − 0.743i)9-s + (−0.669 − 0.743i)11-s + (−0.913 − 0.406i)17-s + (−0.913 − 0.406i)19-s + (0.809 + 0.587i)21-s + (−0.669 − 0.743i)23-s + (0.309 − 0.951i)27-s + (−0.913 + 0.406i)29-s + (−0.809 + 0.587i)31-s + (−0.913 − 0.406i)33-s + (−0.978 − 0.207i)37-s + (−0.978 − 0.207i)41-s + (−0.5 − 0.866i)43-s + ⋯ |
L(s) = 1 | + (0.913 − 0.406i)3-s + (0.5 + 0.866i)7-s + (0.669 − 0.743i)9-s + (−0.669 − 0.743i)11-s + (−0.913 − 0.406i)17-s + (−0.913 − 0.406i)19-s + (0.809 + 0.587i)21-s + (−0.669 − 0.743i)23-s + (0.309 − 0.951i)27-s + (−0.913 + 0.406i)29-s + (−0.809 + 0.587i)31-s + (−0.913 − 0.406i)33-s + (−0.978 − 0.207i)37-s + (−0.978 − 0.207i)41-s + (−0.5 − 0.866i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.983 - 0.183i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.983 - 0.183i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05950534399 - 0.6434400491i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05950534399 - 0.6434400491i\) |
\(L(1)\) |
\(\approx\) |
\(1.076058986 - 0.2331139842i\) |
\(L(1)\) |
\(\approx\) |
\(1.076058986 - 0.2331139842i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.913 - 0.406i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.669 - 0.743i)T \) |
| 17 | \( 1 + (-0.913 - 0.406i)T \) |
| 19 | \( 1 + (-0.913 - 0.406i)T \) |
| 23 | \( 1 + (-0.669 - 0.743i)T \) |
| 29 | \( 1 + (-0.913 + 0.406i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.978 - 0.207i)T \) |
| 41 | \( 1 + (-0.978 - 0.207i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.809 + 0.587i)T \) |
| 53 | \( 1 + (-0.809 - 0.587i)T \) |
| 59 | \( 1 + (-0.669 + 0.743i)T \) |
| 61 | \( 1 + (0.978 - 0.207i)T \) |
| 67 | \( 1 + (-0.104 - 0.994i)T \) |
| 71 | \( 1 + (-0.104 + 0.994i)T \) |
| 73 | \( 1 + (-0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.809 + 0.587i)T \) |
| 89 | \( 1 + (0.669 + 0.743i)T \) |
| 97 | \( 1 + (0.104 - 0.994i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.978487147480306328252821920063, −19.067253795423161206497022219407, −18.38716077666984872066015956622, −17.484746809823857652970616616101, −16.939905657248636900137296600169, −16.01637716800130242704518517339, −15.282425411326493364480298472133, −14.82176938675935881280385422539, −14.05305805023244995629383750356, −13.25180657094059819617314325146, −12.929175271808963351604742266797, −11.726651945069324204941057853131, −10.808644315473615562517763127016, −10.31556666909306429068373459107, −9.62276585575227040539192249073, −8.75091346827425053433854909467, −7.97901866292876125612331434232, −7.4953283433963508734019577653, −6.6653976768396881725689551203, −5.48368904380340650648855477053, −4.56282887505409340363499847702, −4.068075096821288115867170333745, −3.27442091047414589258134582619, −2.01024170395110679845618106408, −1.75407057334481763162824567018,
0.15032411163507494896846011082, 1.68624509224589096886627027371, 2.26863372871681515580549466441, 3.01404377091183383880001090586, 3.93523726960436479868864256430, 4.89714347393634728353130572116, 5.7160339804293634311497181759, 6.642884266637817437221176941607, 7.348634004739854600494679609059, 8.39000983687879655542873309334, 8.62055309701758353349602489523, 9.313701508380812475042492292158, 10.4192223009898048555232987820, 11.087036675103091941380900586950, 11.987785272985055657099057467712, 12.728896256134704409777960137698, 13.30127434017981547960333978554, 14.13176462177585193255461784413, 14.65901718999568214598224140994, 15.563194651008144275159536867712, 15.83193396853872684121436126604, 17.00665790403910619153028148723, 17.86895391244255863861461716006, 18.53369752113300322693166860620, 18.84609189919503321969604817726