| L(s) = 1 | + (−0.5 + 0.866i)3-s + (0.5 + 0.866i)7-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s − 21-s + (−0.5 + 0.866i)23-s + 27-s + (−0.5 + 0.866i)29-s + 31-s + (−0.5 − 0.866i)33-s + (−0.5 + 0.866i)37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)3-s + (0.5 + 0.866i)7-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s − 21-s + (−0.5 + 0.866i)23-s + 27-s + (−0.5 + 0.866i)29-s + 31-s + (−0.5 − 0.866i)33-s + (−0.5 + 0.866i)37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.872 - 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.872 - 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1523552296 + 0.5835382032i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.1523552296 + 0.5835382032i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6798636959 + 0.3809798232i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6798636959 + 0.3809798232i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.75557346196074694114000303510, −24.335737124544114219894248810899, −23.19858592744874922999903937723, −22.82793295638804362714338361845, −21.39093010316908048757721024011, −20.57083709984608607812608702767, −19.425452577794739641796219015805, −18.60311747040356251377175435852, −17.79632298776074252718782515488, −16.77919726225042222222529922977, −16.17126287554210636308150391101, −14.49634358617532637891611865679, −13.781144096575271275896096957052, −12.90102835129457714593993998332, −11.78437218431059236589076065037, −10.97561192112617959275976588016, −10.02850615530129226377404318078, −8.28888558035901104377953133556, −7.71628307264455985298500489192, −6.537693054544142320904438988848, −5.5588359260136902607218494205, −4.34633039606668098765945203172, −2.771848633028950678100265449203, −1.34312685120691394804881584135, −0.20593116045547772811276918329,
1.83444993313955710189602597387, 3.28770032081180768434747541368, 4.641225142731184130706699795099, 5.36863894835302847853239087018, 6.48760796247073842570276753882, 7.976221643211425112707194261075, 9.039239134686433173707545308537, 10.00583930843996880540097511233, 10.946714312595929038830047046302, 11.92405027641570673500938394905, 12.753023066073002914499078382811, 14.2815195490394942637969163722, 15.31153744125686468248638316723, 15.63673328356745084901547048952, 17.07162185153835704186333552748, 17.66369365692374441842176590604, 18.68265175634180261050224401323, 19.9339466695050162641137960897, 20.95780757593298043284298841890, 21.59242420383886086491001460891, 22.39209679865342044391604005221, 23.44600050534408803396817393610, 24.16492385648550905977124712499, 25.60450398746883568268317392906, 26.04874018034103215118871095450