L(s) = 1 | + (0.866 + 0.5i)2-s + (0.5 + 0.866i)3-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)5-s + i·6-s + i·8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)12-s + i·13-s − i·15-s + (−0.5 + 0.866i)16-s + (0.866 − 0.5i)17-s + (−0.866 + 0.5i)18-s + (−0.866 − 0.5i)19-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.5 + 0.866i)3-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)5-s + i·6-s + i·8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)12-s + i·13-s − i·15-s + (−0.5 + 0.866i)16-s + (0.866 − 0.5i)17-s + (−0.866 + 0.5i)18-s + (−0.866 − 0.5i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 259 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.993 - 0.115i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.993 - 0.115i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1416750439 + 2.443102982i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.1416750439 + 2.443102982i\) |
\(L(1)\) |
\(\approx\) |
\(1.136144953 + 1.153395389i\) |
\(L(1)\) |
\(\approx\) |
\(1.136144953 + 1.153395389i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + iT \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 - iT \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.866 - 0.5i)T \) |
| 61 | \( 1 + (0.866 + 0.5i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (-0.866 - 0.5i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.06826499042844200092242911038, −23.90685820746362783294667663345, −23.5680694796566619616364987789, −22.5433137765094602987467046546, −21.64747057541860864836494932992, −20.39120189225109408700373098662, −19.73794034228402561612849368489, −18.97932900331628816113035336642, −18.303493335267308900091251660114, −16.71298881035675485295494602582, −15.405446996434092532212602655526, −14.66430761392558957013351096418, −13.935739743598205543609357153706, −12.80001341843554285025085829270, −12.122696433799218889180520011822, −11.19159321199826131971325040570, −10.17716524135329586302264270431, −8.56239025571343331937050730212, −7.61317057703457106695973571999, −6.50930006738950626755872929907, −5.58009630859033266594501968933, −3.71294229807211345183707271334, −3.31541143254122423343618727207, −1.885506627951272129590556838226, −0.507993528145774757520834394540,
2.16342386429120444209669581470, 3.61277962485321863743629542675, 4.335487750749499887319115571556, 5.080511317485468232178567390946, 6.64168238423615275938691996822, 7.76488280315421856432853900528, 8.648117514052133716282258814203, 9.731778161688205903647705789468, 11.24876413880757268638599230224, 12.00253425146940670353013070963, 13.0533212444212289476971781570, 14.3309385378250535350706334777, 14.82017077220680875624811812496, 15.887504460138176183810386397681, 16.424101990130570959179291601968, 17.33910573464260868950729743378, 19.115834911998857719365067847330, 20.05980919413928040348719720363, 20.75339631712222006998202586213, 21.596048073092446944228016657679, 22.57374496353307159955624324198, 23.35091047061278185055812245482, 24.25242061635604291100358727856, 25.27368201877838451959691472608, 25.98124430841122404999196944437