| L(s)  = 1 | + (−0.642 − 0.766i)2-s   + (0.766 + 0.642i)3-s   + (−0.173 + 0.984i)4-s   + (0.342 + 0.939i)5-s   − i·6-s     + (0.866 − 0.5i)8-s   + (0.173 + 0.984i)9-s   + (0.5 − 0.866i)10-s   + (0.5 + 0.866i)11-s   + (−0.766 + 0.642i)12-s   + (−0.984 − 0.173i)13-s     + (−0.342 + 0.939i)15-s   + (−0.939 − 0.342i)16-s   + (0.984 − 0.173i)17-s   + (0.642 − 0.766i)18-s   + (0.642 − 0.766i)19-s  + ⋯ | 
| L(s)  = 1 | + (−0.642 − 0.766i)2-s   + (0.766 + 0.642i)3-s   + (−0.173 + 0.984i)4-s   + (0.342 + 0.939i)5-s   − i·6-s     + (0.866 − 0.5i)8-s   + (0.173 + 0.984i)9-s   + (0.5 − 0.866i)10-s   + (0.5 + 0.866i)11-s   + (−0.766 + 0.642i)12-s   + (−0.984 − 0.173i)13-s     + (−0.342 + 0.939i)15-s   + (−0.939 − 0.342i)16-s   + (0.984 − 0.173i)17-s   + (0.642 − 0.766i)18-s   + (0.642 − 0.766i)19-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 259 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.534 + 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.534 + 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(1.005520389 + 0.5537944769i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.005520389 + 0.5537944769i\) | 
    
        
      | \(L(1)\) | \(\approx\) | \(1.001838368 + 0.1944156313i\) | 
    
      | \(L(1)\) | \(\approx\) | \(1.001838368 + 0.1944156313i\) | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 7 | \( 1 \) | 
|  | 37 | \( 1 \) | 
| good | 2 | \( 1 + (-0.642 - 0.766i)T \) | 
|  | 3 | \( 1 + (0.766 + 0.642i)T \) | 
|  | 5 | \( 1 + (0.342 + 0.939i)T \) | 
|  | 11 | \( 1 + (0.5 + 0.866i)T \) | 
|  | 13 | \( 1 + (-0.984 - 0.173i)T \) | 
|  | 17 | \( 1 + (0.984 - 0.173i)T \) | 
|  | 19 | \( 1 + (0.642 - 0.766i)T \) | 
|  | 23 | \( 1 + (-0.866 - 0.5i)T \) | 
|  | 29 | \( 1 + (-0.866 + 0.5i)T \) | 
|  | 31 | \( 1 + iT \) | 
|  | 41 | \( 1 + (0.173 - 0.984i)T \) | 
|  | 43 | \( 1 + iT \) | 
|  | 47 | \( 1 + (0.5 - 0.866i)T \) | 
|  | 53 | \( 1 + (-0.939 - 0.342i)T \) | 
|  | 59 | \( 1 + (-0.342 + 0.939i)T \) | 
|  | 61 | \( 1 + (0.984 + 0.173i)T \) | 
|  | 67 | \( 1 + (0.939 - 0.342i)T \) | 
|  | 71 | \( 1 + (0.766 + 0.642i)T \) | 
|  | 73 | \( 1 + T \) | 
|  | 79 | \( 1 + (-0.342 - 0.939i)T \) | 
|  | 83 | \( 1 + (-0.173 - 0.984i)T \) | 
|  | 89 | \( 1 + (0.342 - 0.939i)T \) | 
|  | 97 | \( 1 + (0.866 + 0.5i)T \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−25.562097716319358784011457251465, −24.85090664296132152615683335983, −24.25229727373420909022120070224, −23.61780565465537589625583370759, −22.1640634510251330379104720244, −20.857973081299558084392599733871, −20.01273041120880440485770067719, −19.18077039438670263067250171626, −18.4492852113689253357704868338, −17.24225229999534457496927458408, −16.684685602612627784766508183177, −15.56855217937976431988974536701, −14.34056493045534322795280843220, −13.89664650612713226021414664426, −12.69960519259573056090042956693, −11.63868006726368759596425036342, −9.77227887945902596401491244555, −9.39130986376780556404982230467, −8.15343080328017437643044120266, −7.67898292499606014775155640679, −6.26210774435628697825606001239, −5.42526605294446619229353411869, −3.85979195065833826657520610818, −2.04301238825798070670193083365, −0.95398403393825529441082315887, 
1.893006752523720228047253610797, 2.81340507460452976160830731484, 3.75411354948653250197314291680, 5.040764228073033923271652411098, 7.04283458963907254098725357500, 7.734638265055015585413065635325, 9.120162347147286274226924054153, 9.86023470778898044623241757998, 10.44490858579280859180370017615, 11.62732989203444561359170668307, 12.713772457192914056087755514451, 14.023416397213138092320006875904, 14.6492017229135690842202795372, 15.82008367661300681928888767488, 16.96732734959549970262545178105, 17.889403152076040538678539565031, 18.821148098863753219598287354929, 19.74660298586204364299880824779, 20.3489921881511784991618082359, 21.44601293922230893545178329749, 22.12144768938135222128260224562, 22.77504101480770544224415003087, 24.6591622094354100635299784493, 25.597473985042004452991954254114, 26.12471839485348667721173529893
