L(s) = 1 | + (0.866 + 0.5i)7-s + (0.623 + 0.781i)11-s + (0.680 − 0.733i)13-s + (−0.294 + 0.955i)17-s + (0.988 + 0.149i)19-s + (0.930 + 0.365i)23-s + (−0.0747 + 0.997i)29-s + (−0.826 − 0.563i)31-s + (0.866 − 0.5i)37-s + (0.900 − 0.433i)41-s + (−0.781 − 0.623i)47-s + (0.5 + 0.866i)49-s + (0.680 + 0.733i)53-s + (0.222 + 0.974i)59-s + (−0.826 + 0.563i)61-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)7-s + (0.623 + 0.781i)11-s + (0.680 − 0.733i)13-s + (−0.294 + 0.955i)17-s + (0.988 + 0.149i)19-s + (0.930 + 0.365i)23-s + (−0.0747 + 0.997i)29-s + (−0.826 − 0.563i)31-s + (0.866 − 0.5i)37-s + (0.900 − 0.433i)41-s + (−0.781 − 0.623i)47-s + (0.5 + 0.866i)49-s + (0.680 + 0.733i)53-s + (0.222 + 0.974i)59-s + (−0.826 + 0.563i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2580 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.704 + 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2580 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.704 + 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.010102203 + 0.8367752523i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.010102203 + 0.8367752523i\) |
\(L(1)\) |
\(\approx\) |
\(1.313727993 + 0.2091392586i\) |
\(L(1)\) |
\(\approx\) |
\(1.313727993 + 0.2091392586i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 43 | \( 1 \) |
good | 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.623 + 0.781i)T \) |
| 13 | \( 1 + (0.680 - 0.733i)T \) |
| 17 | \( 1 + (-0.294 + 0.955i)T \) |
| 19 | \( 1 + (0.988 + 0.149i)T \) |
| 23 | \( 1 + (0.930 + 0.365i)T \) |
| 29 | \( 1 + (-0.0747 + 0.997i)T \) |
| 31 | \( 1 + (-0.826 - 0.563i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.900 - 0.433i)T \) |
| 47 | \( 1 + (-0.781 - 0.623i)T \) |
| 53 | \( 1 + (0.680 + 0.733i)T \) |
| 59 | \( 1 + (0.222 + 0.974i)T \) |
| 61 | \( 1 + (-0.826 + 0.563i)T \) |
| 67 | \( 1 + (0.149 - 0.988i)T \) |
| 71 | \( 1 + (-0.365 - 0.930i)T \) |
| 73 | \( 1 + (-0.680 + 0.733i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.997 + 0.0747i)T \) |
| 89 | \( 1 + (-0.0747 - 0.997i)T \) |
| 97 | \( 1 + (0.781 - 0.623i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.23669092582001574113985090213, −18.56425364418257441587043554063, −17.8985480576160042995312484188, −17.196673967164911191357996082333, −16.35268472752712635003956002969, −16.01134939691344376557742583258, −14.83015794836685663968442096001, −14.29023102776892631660644805169, −13.655449110026992553224697388002, −13.06940363016653527257614179006, −11.80015744216720671743075811911, −11.36591591302409768207343314254, −10.92698249819878381558713729278, −9.76410467471095039143826981556, −9.0943454063275304007773072552, −8.40091973023544602634517682675, −7.54317764978320925841173932709, −6.84086754200049227333184668433, −6.032250792855195404917851706658, −5.073235515157142852900610379045, −4.38929850559350701460516947830, −3.55848612602915059312779695487, −2.65640341184438631338986817755, −1.48702352004117082081539847172, −0.82165229891564954769907912193,
1.15543113998124375177598973324, 1.76269669219217405386000066219, 2.833196680082392100593865422400, 3.77328114673825484866457525169, 4.55785600386135147336826802418, 5.48383352259565781330702487690, 5.992027108500829248927903630687, 7.176405134710799141562638278242, 7.68294394320996762636691891042, 8.68435053116529019560250122207, 9.12858774477627727530057488023, 10.108203575449591510632583996264, 10.96946166124774567676590843543, 11.45048737586070158978576075537, 12.38308502864197605194453119561, 12.91484016932467863898565558412, 13.81033416551769492046484721080, 14.75035096719633693202879299278, 15.01416237442469241753526370124, 15.8281114414341960914425628691, 16.749448375384540174010043857835, 17.434149098329543464947624621118, 18.15455493836660205915140222744, 18.46902345871633171233247692132, 19.75241705779476041762836858807