| L(s) = 1 | − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s − 11-s + 12-s − 13-s + 16-s − 17-s − 18-s − 19-s + 22-s − 23-s − 24-s + 26-s + 27-s − 29-s + 31-s − 32-s − 33-s + 34-s + 36-s − 37-s + 38-s − 39-s + ⋯ |
| L(s) = 1 | − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s − 11-s + 12-s − 13-s + 16-s − 17-s − 18-s − 19-s + 22-s − 23-s − 24-s + 26-s + 27-s − 29-s + 31-s − 32-s − 33-s + 34-s + 36-s − 37-s + 38-s − 39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2555 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2555 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9835961901\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9835961901\) |
| \(L(1)\) |
\(\approx\) |
\(0.7458228185\) |
| \(L(1)\) |
\(\approx\) |
\(0.7458228185\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 73 | \( 1 \) |
| good | 2 | \( 1 - T \) |
| 3 | \( 1 + T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.42100603431393838739942205925, −18.53146613382033796490160885906, −17.98175520588604063098561195514, −17.2050608424332366451036576862, −16.41216370070195634819251184772, −15.50214533792589653040960224670, −15.268643391005377330161511244975, −14.41039625823134060666353116148, −13.50470792837175033356474852698, −12.75383466902032202094314684959, −12.05331783298862045408294501841, −11.03335300006393066399617291514, −10.23337099220260971439850406781, −9.84960430000007939699476030465, −8.8794613943820341311513131751, −8.38412687906959218364066426629, −7.64904428295506790558138278165, −7.045398354214119910590042560881, −6.20404638048430544768014516503, −5.05115564229776642677293604455, −4.09564952256859738843351837637, −3.0555939617817157756560221175, −2.25301033498651829145129958426, −1.86864713673285569464797785637, −0.39213401708952462606545528564,
0.39213401708952462606545528564, 1.86864713673285569464797785637, 2.25301033498651829145129958426, 3.0555939617817157756560221175, 4.09564952256859738843351837637, 5.05115564229776642677293604455, 6.20404638048430544768014516503, 7.045398354214119910590042560881, 7.64904428295506790558138278165, 8.38412687906959218364066426629, 8.8794613943820341311513131751, 9.84960430000007939699476030465, 10.23337099220260971439850406781, 11.03335300006393066399617291514, 12.05331783298862045408294501841, 12.75383466902032202094314684959, 13.50470792837175033356474852698, 14.41039625823134060666353116148, 15.268643391005377330161511244975, 15.50214533792589653040960224670, 16.41216370070195634819251184772, 17.2050608424332366451036576862, 17.98175520588604063098561195514, 18.53146613382033796490160885906, 19.42100603431393838739942205925