| L(s) = 1 | + (0.967 − 0.254i)2-s + (0.989 − 0.146i)3-s + (0.870 − 0.492i)4-s + (−0.999 − 0.0183i)5-s + (0.919 − 0.393i)6-s + (0.716 − 0.697i)8-s + (0.957 − 0.289i)9-s + (−0.971 + 0.236i)10-s + (0.546 + 0.837i)11-s + (0.789 − 0.614i)12-s + (0.315 + 0.948i)13-s + (−0.991 + 0.128i)15-s + (0.515 − 0.856i)16-s + (−0.861 + 0.507i)17-s + (0.851 − 0.523i)18-s + ⋯ |
| L(s) = 1 | + (0.967 − 0.254i)2-s + (0.989 − 0.146i)3-s + (0.870 − 0.492i)4-s + (−0.999 − 0.0183i)5-s + (0.919 − 0.393i)6-s + (0.716 − 0.697i)8-s + (0.957 − 0.289i)9-s + (−0.971 + 0.236i)10-s + (0.546 + 0.837i)11-s + (0.789 − 0.614i)12-s + (0.315 + 0.948i)13-s + (−0.991 + 0.128i)15-s + (0.515 − 0.856i)16-s + (−0.861 + 0.507i)17-s + (0.851 − 0.523i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.157i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.157i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(4.284662347 - 0.3403537623i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.284662347 - 0.3403537623i\) |
| \(L(1)\) |
\(\approx\) |
\(2.411535699 - 0.3069326671i\) |
| \(L(1)\) |
\(\approx\) |
\(2.411535699 - 0.3069326671i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.967 - 0.254i)T \) |
| 3 | \( 1 + (0.989 - 0.146i)T \) |
| 5 | \( 1 + (-0.999 - 0.0183i)T \) |
| 11 | \( 1 + (0.546 + 0.837i)T \) |
| 13 | \( 1 + (0.315 + 0.948i)T \) |
| 17 | \( 1 + (-0.861 + 0.507i)T \) |
| 23 | \( 1 + (-0.621 + 0.783i)T \) |
| 29 | \( 1 + (0.983 - 0.182i)T \) |
| 31 | \( 1 + (0.904 - 0.426i)T \) |
| 37 | \( 1 + (0.451 - 0.892i)T \) |
| 41 | \( 1 + (-0.842 - 0.539i)T \) |
| 43 | \( 1 + (0.280 + 0.959i)T \) |
| 47 | \( 1 + (-0.119 + 0.992i)T \) |
| 53 | \( 1 + (-0.800 - 0.599i)T \) |
| 59 | \( 1 + (-0.0459 + 0.998i)T \) |
| 61 | \( 1 + (-0.912 - 0.410i)T \) |
| 67 | \( 1 + (0.997 - 0.0734i)T \) |
| 71 | \( 1 + (0.811 + 0.584i)T \) |
| 73 | \( 1 + (0.870 + 0.492i)T \) |
| 79 | \( 1 + (0.280 + 0.959i)T \) |
| 83 | \( 1 + (-0.754 + 0.656i)T \) |
| 89 | \( 1 + (0.870 - 0.492i)T \) |
| 97 | \( 1 + (-0.562 + 0.826i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.86702951104235586288013361923, −18.948522062964709455119526424086, −18.19472364594433773457223097094, −17.025678266821008770074515438731, −16.22210093985961589174455488173, −15.60851395740549005513289556223, −15.28737727744238255359264716864, −14.38493799937939711116568725924, −13.82910096975937659736412603519, −13.195941619952109633643881029599, −12.34488568665092927311809353863, −11.736197213575400414932213651912, −10.86075184867845564222519248270, −10.23042813198047366760379393744, −8.88738984107815065193976250922, −8.28388780173867108324514055814, −7.85187746014096219729038819909, −6.80321924031488178846380931847, −6.31720149214264260766222829956, −4.95364850681653151934959843724, −4.46096839725832652828121336021, −3.50146422680302571737023369504, −3.15354700811867510461528723773, −2.258434125400224827198310109694, −0.94660391734559269208580563894,
1.20781978589599229248881146067, 2.00601218342713375868874690814, 2.81272453678573107716973689050, 3.85811851817674101381569796797, 4.15285976452892087120264314745, 4.82976147739512407866359646148, 6.32502646056908412914780844363, 6.78943835184651903934999380163, 7.607796210404925904078992830108, 8.30080005970052947372562414476, 9.27877561021729221279379892078, 9.94862638099124082510736512397, 11.00542915469116554863564396546, 11.64946358110840454185097412862, 12.37051792467748204361009183527, 12.90554636311335584530153532231, 13.87756474171806960190475612272, 14.26577965741270235317106079866, 15.12882070293380666931642912038, 15.579689437679813419817643069972, 16.119210335691774231019611661558, 17.20607661671273431999379956451, 18.26565774157316275374366088710, 19.12238788338934824891253624004, 19.71081365174071518744596033666