| L(s) = 1 | + (0.999 − 0.0183i)2-s + (−0.896 + 0.443i)3-s + (0.999 − 0.0367i)4-s + (0.435 − 0.900i)5-s + (−0.888 + 0.459i)6-s + (0.998 − 0.0550i)8-s + (0.606 − 0.794i)9-s + (0.418 − 0.908i)10-s + (−0.677 + 0.735i)11-s + (−0.879 + 0.475i)12-s + (0.690 − 0.723i)13-s + (0.00918 + 0.999i)15-s + (0.997 − 0.0734i)16-s + (0.467 + 0.883i)17-s + (0.592 − 0.805i)18-s + ⋯ |
| L(s) = 1 | + (0.999 − 0.0183i)2-s + (−0.896 + 0.443i)3-s + (0.999 − 0.0367i)4-s + (0.435 − 0.900i)5-s + (−0.888 + 0.459i)6-s + (0.998 − 0.0550i)8-s + (0.606 − 0.794i)9-s + (0.418 − 0.908i)10-s + (−0.677 + 0.735i)11-s + (−0.879 + 0.475i)12-s + (0.690 − 0.723i)13-s + (0.00918 + 0.999i)15-s + (0.997 − 0.0734i)16-s + (0.467 + 0.883i)17-s + (0.592 − 0.805i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.898 + 0.438i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.898 + 0.438i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.749342652 + 0.6351331872i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.749342652 + 0.6351331872i\) |
| \(L(1)\) |
\(\approx\) |
\(1.715155689 + 0.1167896912i\) |
| \(L(1)\) |
\(\approx\) |
\(1.715155689 + 0.1167896912i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.999 - 0.0183i)T \) |
| 3 | \( 1 + (-0.896 + 0.443i)T \) |
| 5 | \( 1 + (0.435 - 0.900i)T \) |
| 11 | \( 1 + (-0.677 + 0.735i)T \) |
| 13 | \( 1 + (0.690 - 0.723i)T \) |
| 17 | \( 1 + (0.467 + 0.883i)T \) |
| 23 | \( 1 + (0.0642 + 0.997i)T \) |
| 29 | \( 1 + (-0.209 + 0.977i)T \) |
| 31 | \( 1 + (-0.191 + 0.981i)T \) |
| 37 | \( 1 + (0.298 + 0.954i)T \) |
| 41 | \( 1 + (0.983 - 0.182i)T \) |
| 43 | \( 1 + (-0.995 - 0.0917i)T \) |
| 47 | \( 1 + (0.842 + 0.539i)T \) |
| 53 | \( 1 + (0.0459 - 0.998i)T \) |
| 59 | \( 1 + (-0.333 + 0.942i)T \) |
| 61 | \( 1 + (0.800 - 0.599i)T \) |
| 67 | \( 1 + (0.227 + 0.973i)T \) |
| 71 | \( 1 + (-0.919 + 0.393i)T \) |
| 73 | \( 1 + (-0.999 - 0.0367i)T \) |
| 79 | \( 1 + (0.995 + 0.0917i)T \) |
| 83 | \( 1 + (0.962 - 0.272i)T \) |
| 89 | \( 1 + (0.999 - 0.0367i)T \) |
| 97 | \( 1 + (0.957 - 0.289i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.02416306052581965663412350849, −18.780914005287574438752582855770, −18.07846910556528962797016251606, −17.1092038904762148005095533069, −16.38278766617357561311354748887, −15.943965408159914145260781815128, −14.99203274094167410019336009761, −14.193118095405619584736635999869, −13.52510367427852861195431832274, −13.17005671025472126711047974909, −12.107776619228232095887302011715, −11.50440753129211539395733806437, −10.89013605783491951649094367834, −10.42020119141529150564018370815, −9.3867042879498295603850706818, −7.95732899552494654282379018255, −7.38108828850325135919215150472, −6.52896907462963922775881222883, −6.027499962374119845372440743121, −5.45804833164709730971617056844, −4.51265938259137194303690346880, −3.62809891342758370890023427541, −2.592517292348403865680889703940, −2.04989020720717013945354428377, −0.78441273810413073924351849346,
1.11499669121015632922628090318, 1.74517066213061656303199825581, 3.08674069652119334436092798687, 3.90120263412999635207805280557, 4.70986047236698738292877348841, 5.40360242968078837530354143096, 5.73635587896387187190394724787, 6.65090188882526768418937101217, 7.56225996932543111314124316584, 8.45925296292208992634824232311, 9.56913564357182121596001269248, 10.33357021803217684023836788842, 10.778931275046016145628604773, 11.77867164921058000711519413285, 12.40716827390932458134848925764, 12.97746098454507863173652959741, 13.44540143231014058616146549352, 14.643189807995433439825232272019, 15.22669818741704247199317096804, 16.07261481810000791004993571429, 16.29470292301096718108173549054, 17.42366564170698900242103405246, 17.63430107881334885853308332739, 18.735238348753634689405145179567, 19.8703192558246680298684377205