| L(s) = 1 | + (−0.227 + 0.973i)2-s + (0.515 + 0.856i)3-s + (−0.896 − 0.443i)4-s + (−0.991 + 0.128i)5-s + (−0.951 + 0.307i)6-s + (0.635 − 0.771i)8-s + (−0.467 + 0.883i)9-s + (0.100 − 0.994i)10-s + (0.789 − 0.614i)11-s + (−0.0825 − 0.996i)12-s + (−0.777 − 0.628i)13-s + (−0.621 − 0.783i)15-s + (0.606 + 0.794i)16-s + (0.832 + 0.554i)17-s + (−0.754 − 0.656i)18-s + ⋯ |
| L(s) = 1 | + (−0.227 + 0.973i)2-s + (0.515 + 0.856i)3-s + (−0.896 − 0.443i)4-s + (−0.991 + 0.128i)5-s + (−0.951 + 0.307i)6-s + (0.635 − 0.771i)8-s + (−0.467 + 0.883i)9-s + (0.100 − 0.994i)10-s + (0.789 − 0.614i)11-s + (−0.0825 − 0.996i)12-s + (−0.777 − 0.628i)13-s + (−0.621 − 0.783i)15-s + (0.606 + 0.794i)16-s + (0.832 + 0.554i)17-s + (−0.754 − 0.656i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.189 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2527 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.189 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2422300509 + 0.2935569316i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.2422300509 + 0.2935569316i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5262744775 + 0.5190975431i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5262744775 + 0.5190975431i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (-0.227 + 0.973i)T \) |
| 3 | \( 1 + (0.515 + 0.856i)T \) |
| 5 | \( 1 + (-0.991 + 0.128i)T \) |
| 11 | \( 1 + (0.789 - 0.614i)T \) |
| 13 | \( 1 + (-0.777 - 0.628i)T \) |
| 17 | \( 1 + (0.832 + 0.554i)T \) |
| 23 | \( 1 + (-0.999 - 0.0183i)T \) |
| 29 | \( 1 + (0.280 + 0.959i)T \) |
| 31 | \( 1 + (-0.998 + 0.0550i)T \) |
| 37 | \( 1 + (0.137 + 0.990i)T \) |
| 41 | \( 1 + (0.663 - 0.748i)T \) |
| 43 | \( 1 + (-0.912 - 0.410i)T \) |
| 47 | \( 1 + (0.741 + 0.670i)T \) |
| 53 | \( 1 + (0.209 - 0.977i)T \) |
| 59 | \( 1 + (0.315 + 0.948i)T \) |
| 61 | \( 1 + (0.983 + 0.182i)T \) |
| 67 | \( 1 + (0.870 + 0.492i)T \) |
| 71 | \( 1 + (-0.333 + 0.942i)T \) |
| 73 | \( 1 + (-0.896 + 0.443i)T \) |
| 79 | \( 1 + (-0.912 - 0.410i)T \) |
| 83 | \( 1 + (-0.298 + 0.954i)T \) |
| 89 | \( 1 + (-0.896 - 0.443i)T \) |
| 97 | \( 1 + (-0.861 - 0.507i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.07688763168356896983747556525, −18.4733184556535232502055509483, −17.76426537717587286031748350997, −16.96216647895658500669692753654, −16.29113393499737847230178248156, −15.07770731690241879837282380965, −14.39571544730491266219125825713, −13.946101713102214714438346756352, −12.84111937478924086374049727367, −12.36049865623533639716579403009, −11.75066846272957948983563120580, −11.38712287506756202784632695892, −10.07197667936551783535570558951, −9.41554077869303938916567898192, −8.79655835472393558018179884386, −7.81257308315388814482024857262, −7.52080266843263333711617021571, −6.608901674502606361891258535943, −5.344982276458851020736282726160, −4.24822423413833880414161513851, −3.81380101080004381274278039828, −2.82874310900592805395959270091, −2.052270143418599303587054121348, −1.20674810382805915101863488531, −0.140583136151335529175681454353,
1.25407450917981489744238383217, 2.80665879397175659519550373852, 3.76065741876296516887909534770, 4.090745571465057487324539854360, 5.17509576522515294315813923708, 5.73421044583426491222278954719, 6.89886148294828775187690454673, 7.57673576220127415613265503935, 8.37972152631556799265957757122, 8.68447474673032748937534164320, 9.7501036093895178241121478241, 10.27467806426038290224764637946, 11.09860093662464270539715623220, 12.05673657727407896305953752501, 12.88359410612661332301645804524, 13.94684728002462821003934476181, 14.62977374368215897984727784980, 14.83304902824571768758008252460, 15.77585874343541041449010184912, 16.258906541916282731665183518, 16.840909371471759229523148074138, 17.58390965111299567788985520925, 18.66201246070349909284398166007, 19.21867035798766235616727925147, 19.85206605783622436458371229027