| L(s) = 1 | + (−0.382 + 0.923i)5-s + (0.707 + 0.707i)7-s + (0.923 + 0.382i)11-s − i·17-s + (0.382 + 0.923i)19-s + (−0.707 + 0.707i)23-s + (−0.707 − 0.707i)25-s + (0.923 − 0.382i)29-s − 31-s + (−0.923 + 0.382i)35-s + (−0.382 + 0.923i)37-s + (−0.707 + 0.707i)41-s + (−0.923 − 0.382i)43-s + i·47-s + i·49-s + ⋯ |
| L(s) = 1 | + (−0.382 + 0.923i)5-s + (0.707 + 0.707i)7-s + (0.923 + 0.382i)11-s − i·17-s + (0.382 + 0.923i)19-s + (−0.707 + 0.707i)23-s + (−0.707 − 0.707i)25-s + (0.923 − 0.382i)29-s − 31-s + (−0.923 + 0.382i)35-s + (−0.382 + 0.923i)37-s + (−0.707 + 0.707i)41-s + (−0.923 − 0.382i)43-s + i·47-s + i·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.773 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.773 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5031525324 + 1.406217124i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5031525324 + 1.406217124i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9746843841 + 0.4781448035i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9746843841 + 0.4781448035i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (-0.382 + 0.923i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 11 | \( 1 + (0.923 + 0.382i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (0.382 + 0.923i)T \) |
| 23 | \( 1 + (-0.707 + 0.707i)T \) |
| 29 | \( 1 + (0.923 - 0.382i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (-0.382 + 0.923i)T \) |
| 41 | \( 1 + (-0.707 + 0.707i)T \) |
| 43 | \( 1 + (-0.923 - 0.382i)T \) |
| 47 | \( 1 + iT \) |
| 53 | \( 1 + (0.923 + 0.382i)T \) |
| 59 | \( 1 + (0.382 - 0.923i)T \) |
| 61 | \( 1 + (0.923 - 0.382i)T \) |
| 67 | \( 1 + (0.923 - 0.382i)T \) |
| 71 | \( 1 + (-0.707 - 0.707i)T \) |
| 73 | \( 1 + (-0.707 + 0.707i)T \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 + (-0.382 - 0.923i)T \) |
| 89 | \( 1 + (-0.707 - 0.707i)T \) |
| 97 | \( 1 + T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.49306644545426697062724548059, −18.29149569166305599290742050743, −17.77569675149415930449098663291, −16.9062214831515089281150824237, −16.43061295924764043728205458798, −15.79847515945291786749737927996, −14.82104879525342107235152424214, −14.07624891860348507144203640428, −13.5641157107731821108556624408, −12.69220342575207985721963137140, −11.72855443691157464865289352408, −11.53238982130389753528372194914, −10.50443497925191978063121851770, −9.654981766737640145717046623727, −8.71672038236456553080561411683, −8.438476540469653930331885115105, −7.26036804951869098902140671429, −6.89685047239574342079317865946, −5.56536661561733690183359717653, −4.94667152840612794048530558566, −4.172666937425964966723684392059, −3.53730976524448303825443938102, −2.25749967290691952837057795764, −1.22830336756125391437671129492, −0.50808723685549554006920187746,
1.48331887108025226375885759981, 2.03996527001253839723599232487, 3.21793289531608061714821225806, 3.84797201047835523175551742523, 4.73611250206976932738331189035, 5.79471444650749899776771865216, 6.37128694845281523397051983135, 7.25359746684843416586404417155, 8.05980104582847423232274372781, 8.59801929111229376145200475650, 9.710101535737817593216197656129, 10.26561869623952243988148556738, 11.20698406350137104546646202042, 11.84055287081449759225962929476, 12.22990549440402294949339267792, 13.36513558596605219833104587575, 14.40012006384925560611820871427, 14.580321366360610089235066640946, 15.37124190714171472850409595483, 16.002454648121294959231868344986, 17.09945571215646252928434919212, 17.619102257782264987669957087710, 18.42540320588406872816067579565, 18.893541279370750318535271463358, 19.71848974737110091397442118683