| L(s) = 1 | + (0.382 + 0.923i)5-s + (0.965 + 0.258i)7-s + (0.130 − 0.991i)11-s + (−0.866 + 0.5i)17-s + (0.991 − 0.130i)19-s + (0.965 − 0.258i)23-s + (−0.707 + 0.707i)25-s + (−0.793 + 0.608i)29-s + 31-s + (0.130 + 0.991i)35-s + (−0.991 − 0.130i)37-s + (−0.965 + 0.258i)41-s + (0.793 + 0.608i)43-s − i·47-s + (0.866 + 0.5i)49-s + ⋯ |
| L(s) = 1 | + (0.382 + 0.923i)5-s + (0.965 + 0.258i)7-s + (0.130 − 0.991i)11-s + (−0.866 + 0.5i)17-s + (0.991 − 0.130i)19-s + (0.965 − 0.258i)23-s + (−0.707 + 0.707i)25-s + (−0.793 + 0.608i)29-s + 31-s + (0.130 + 0.991i)35-s + (−0.991 − 0.130i)37-s + (−0.965 + 0.258i)41-s + (0.793 + 0.608i)43-s − i·47-s + (0.866 + 0.5i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.853272971 + 0.9594633279i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.853272971 + 0.9594633279i\) |
| \(L(1)\) |
\(\approx\) |
\(1.281824517 + 0.2698662039i\) |
| \(L(1)\) |
\(\approx\) |
\(1.281824517 + 0.2698662039i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (0.382 + 0.923i)T \) |
| 7 | \( 1 + (0.965 + 0.258i)T \) |
| 11 | \( 1 + (0.130 - 0.991i)T \) |
| 17 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.991 - 0.130i)T \) |
| 23 | \( 1 + (0.965 - 0.258i)T \) |
| 29 | \( 1 + (-0.793 + 0.608i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (-0.991 - 0.130i)T \) |
| 41 | \( 1 + (-0.965 + 0.258i)T \) |
| 43 | \( 1 + (0.793 + 0.608i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.923 - 0.382i)T \) |
| 59 | \( 1 + (-0.608 + 0.793i)T \) |
| 61 | \( 1 + (-0.130 - 0.991i)T \) |
| 67 | \( 1 + (0.793 - 0.608i)T \) |
| 71 | \( 1 + (-0.965 - 0.258i)T \) |
| 73 | \( 1 + (0.707 + 0.707i)T \) |
| 79 | \( 1 + iT \) |
| 83 | \( 1 + (0.382 - 0.923i)T \) |
| 89 | \( 1 + (0.258 + 0.965i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.50012074494179304132353558932, −18.47249975981667700737164688683, −17.77390994231561242856312334524, −17.2516762775023805506537655716, −16.74526572021757962616278144388, −15.61573660495568922770243784013, −15.25712539456640085001393611139, −14.2010948034199157467451129813, −13.6043166344771692160701620628, −13.00653278026202868904562284416, −11.94106617879843908610443617784, −11.68678061018749612155773801030, −10.57929759271980945719840601405, −9.85218358945050691288117263315, −9.06524743841033731862725891727, −8.506685611811674244236706578686, −7.5006159941902277718849295902, −7.010362431656901636138651986390, −5.80175784402900665285533962255, −4.98106584550450611313039515391, −4.62908990780858015110281360284, −3.652335595462833267793339307428, −2.31986182895972981901775436825, −1.6785201692050463563314244600, −0.75857050656546525185133927219,
1.0791914314293108872570799991, 2.00195135671536506199203598394, 2.886293910163172161614803881375, 3.59030284606778642314061729189, 4.71648919809595752780026378615, 5.47311593521848112832436408597, 6.24640595291377407243143850043, 6.99964374188936651257957202853, 7.80831608534526046437603151023, 8.64504884032547626054202884095, 9.27044944693462837092399790564, 10.29976783922889834170777408896, 11.08412585898549559462463305909, 11.29624770326118169515363531391, 12.28417655879254573292834450896, 13.35194518282599526904984186002, 13.8876901329349154041455561519, 14.539771176571386360272249726688, 15.2093056826400558856889994411, 15.86262200333126988818530725205, 16.92489992488297056537225612602, 17.4967672228766278683900067915, 18.18848806618121130000662179029, 18.75862042178155454385239135199, 19.41190988297176569434755432895